Skip to main content

Bicontinuous Surfaces in Self-assembling Amphiphilic Systems

  • Chapter
  • First Online:
Morphology of Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 600))

Abstract

Amphiphiles are molecules which have both hydrophilic and hydrophobic parts. In water- and/or oil-like solvent, they self-assemble into extended sheet-like structures due to the hydrophobic effect. The free energy of an amphiphilic system can be written as a functional of its interfacial geometry, and phase diagrams can be calculated by comparing the free energies following from different geometries. Here we focus on bicontinuous structures, where one highly convoluted interface spans the whole sample and thereby divides it into two separate labyrinths. The main models for surfaces of this class are triply periodic minimal surfaces, their constant mean curvature and parallel surface companions, and random surfaces. We discuss the geometrical properties of each of these types of surfaces and how they translate into the experimentally observed phase behavior of amphiphilic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R. J., ed. (1981): The Geometry of Random Fields (Wiley, Chichester)

    MATH  Google Scholar 

  2. Anderson, D. M., H. T. Davis, L. E. Scriven, J. C. C. Nitsche (1990): ‘Periodic surfaces of prescribed mean curvature’, Adv. Chem. Phys. 77, pp. 337–397

    Article  Google Scholar 

  3. Anderson, D. M., S. M. Gruner, S. Leibler (1988): ‘Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals’, Proc. Natl. Acad. Sci. USA 85, pp. 5364–5368

    Article  ADS  Google Scholar 

  4. Berk, N. F. (1987): ‘Scattering properties of a model bicontinuous structure with a well defined length scale’, Phys. Rev. Lett. 58, p. 2718

    Article  ADS  Google Scholar 

  5. Berk, N. F. (1991): ‘Scattering properties of the leveled-wave model of random morphologies’, Phys. Rev. A 44, p. 5069

    Article  ADS  Google Scholar 

  6. Bruinsma, R. (1992): ‘Elasticity and excitations of minimal crystals’, J. Phys. II France 2, pp. 425–451

    Article  Google Scholar 

  7. Cai, W., T. C. Lubensky, P. Nelson, T. Powers (1994): ‘Measure factors, tension and correlations of fluid membranes’, J. Phys. II France 4, pp. 931–949

    Article  Google Scholar 

  8. Canham, P. B. (1970): ‘The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell’, J. Theor. Biol. 26, p. 61

    Article  Google Scholar 

  9. Cates, M. E., D. Roux, D. Andelman, S. T. Milner, S. A. Safran (1988): ‘Random surface model for the L 3-phase of dilute surfactant solutions’, Europhys. Lett. 5, p. 733

    Article  ADS  Google Scholar 

  10. Charvolin, J., J. F. Sadoc (1990): ‘Structures built by amphiphiles and frustrated fluid films’, J. Phys. (Paris) Colloq. 51, pp. 83–96

    Article  MathSciNet  Google Scholar 

  11. Chen, S.-H., D. D. Lee, K. Kimishima, H. Jinnai, T. Hashimoto (1996): ‘Measurement of the Gaussian curvature of the surfactant film in an isometric bicontinuous one-phase microemulsion’, Phys. Rev. E 54, pp. 6526–6531

    Article  ADS  Google Scholar 

  12. Cvijovic, D., J. Klinowski (1994): ‘The computation of the triply periodic I-WP minimal surface’, Chem. Phys. Lett. 226, pp. 93–99

    Article  ADS  Google Scholar 

  13. Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1995): ‘Light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling’, Phys. Rev. E 52, pp. 3266–3269

    Article  ADS  Google Scholar 

  14. Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1995): ‘Thermodynamics of the L 3 (sponge) phase in the flexible surface model’, J. Phys. II France 5, pp. 199–215

    Article  Google Scholar 

  15. Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1996): ‘Reply to “comment on ‘thermodynamics of the L 3 (sponge) phase in the flexible surface model’ ”’, J. Phys. II France 6, pp. 95–96

    Article  Google Scholar 

  16. Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1997): ‘Reply to “comment on ‘light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling’ ”’, Phys. Rev. E 56, pp. 1278–127

    Article  ADS  Google Scholar 

  17. David, F. (1989): ‘Geometry and field theory of random surfaces and membranes’, in Nelson, D., T. Piran, S. Weinberg, eds., ‘Statistical Mechanics of Membranes and Surfaces’, (World Scientific, Singapore), pp. 157–223

    Google Scholar 

  18. David, F., P. Ginsparg, J. Zinn-Justin, eds. (1996): Fluctuating geometries in statistical mechanics and field theory (Elsevier, Amsterdam)

    Google Scholar 

  19. Deng, Y., M. Marko, K. F. Buttle, A. Leith, M. Mieczkowski, C. A. Mannella (1999): ‘Cubic membrane structure in amoeba (chaos carolinensis) mitochondria determined by electron microscopic tomography’, J. Struct. Biol. 127, pp. 231–239

    Article  Google Scholar 

  20. Düsing, P. M., R. H. Templer, J. M. Seddon (1997): ‘Quantifying packing frustration energy in inverse lyotropic mesophases’, Langmuir 13, pp. 351–359

    Article  Google Scholar 

  21. Endo, H., J. Allgaier, G. Gompper, B. Jakobs, M. Monkenbusch, D. Richter, T. Sottmann, R. Strey (2000): ‘Membrane decoration by amphiphilic block copolymers in bicontinuous microemulsions’, Phys. Rev. Lett. 85, pp. 102–105

    Article  ADS  Google Scholar 

  22. Endo, H., M. Mihailescu, M. Monkenbusch, J. Allgaier, G. Gompper, D. Richter, B. Jakobs, T. Sottmann, R. Strey, I. Grillo (2001): ‘Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures’, J. Chem. Phys. 115, pp. 580–600

    Article  ADS  Google Scholar 

  23. Fischer, W., E. Koch (1987): ‘On 3-periodic minimal surfaces’, Z. Kristallogr. 179, pp. 31–52

    Article  MATH  MathSciNet  Google Scholar 

  24. Fischer, W., E. Koch (1996): ‘Spanning minimal surfaces’, Phil. Trans. R. Soc. Lond. A 354, pp. 2105–2142

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Fodgen, A., S. T. Hyde (1992): ‘Parametrization of triply periodic minimal surfaces. I. Mathematical basis of the construction algorithm for the regular class’, Acta Cryst. A 48, pp. 442–451

    Article  Google Scholar 

  26. Fodgen, A., S. T. Hyde (1999): ‘Continuous transformations of cubic minimal surfaces’, Eur. Phys. J. B 7, pp. 91–104

    Article  ADS  Google Scholar 

  27. Fontell, K. (1990): ‘Cubic phases in surfactant and surfactant-like lipid systems’, Colloid Polym. Sci. 268, pp. 264–85

    Article  Google Scholar 

  28. Golubović, L. (1994): ‘Passages and droplets in lamellar fluid membrane phases’, Phys. Rev. E 50, pp. R2419–R2422

    Article  ADS  Google Scholar 

  29. Gompper, G., H. Endo, M. Mihailescu, J. Allgaier, M. Monkenbusch, D. Richter, B. Jakobs, T. Sottmann, R. Strey (2001): ‘Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions’, Europhys. Lett. 56, pp. 683–689

    Article  ADS  Google Scholar 

  30. Gompper, G., J. Goos (1994): ‘Fluctuating interfaces in microemulsion and sponge phases’, Phys. Rev. E 50, pp. 1325–1335

    Article  ADS  Google Scholar 

  31. Gompper, G., J. Goos (1995): ‘Fluctuations and phase behavior of passages in a stack of fluid membranes’, J. Phys. II France 5, pp. 621–634

    Article  Google Scholar 

  32. Gompper, G., M. Kraus (1993): ‘Ginzburg-Landau theory of ternary amphiphilic systems II: Monte Carlo Simulations’, Phys. Rev. E 47, p. 4301

    Article  ADS  Google Scholar 

  33. Gompper, G., D. M. Kroll (1996): ‘Random surface discretizations and the renormalization of the bending rigidity’, J. Phys. I France 6, pp. 1305–1320

    Article  Google Scholar 

  34. Gompper, G., D. M. Kroll (1997): ‘Fluctuations of polymerized, fluid and hexatic membranes: continuum models and simulations’, Curr. Opin. Colloid Interface Sci. 2, pp. 373–381

    Article  Google Scholar 

  35. Gompper, G., D. M. Kroll (1997): ‘Network models of fluid, hexatic and polymerized membranes’, J. Phys. Condens. Matter 9, pp. 8795–8834

    Article  ADS  Google Scholar 

  36. Gompper, G., D. M. Kroll (1998): ‘Membranes with fluctuating topology: Monte carlo simulations’, Phys. Rev. Lett. 81, pp. 2284–2287

    Article  ADS  Google Scholar 

  37. Gompper, G., D. M. Kroll (2000): ‘Statistical mechanics of membranes: Freezing, undulations, and topology fluctuations’, J. Phys. Condens. Matter 12, pp. 29–37

    Article  ADS  Google Scholar 

  38. Gompper, G., D. Richter, R. Strey (2001): ‘Amphiphilic block copolymers in oil-water-surfactant mixtures: Efficiency boosting, structure, phase behavior, and mechanism’, J. Phys. Condens. Matter 13, pp. 9055–9074

    Article  ADS  Google Scholar 

  39. Gompper, G., M. Schick (1990): ‘Correlation between structural and interfacial properties of amphiphilic systems’, Phys. Rev. Lett. 65, pp. 1116–1119

    Article  ADS  Google Scholar 

  40. Gompper, G., M. Schick (1994): ‘Self-assembling amphiphilic systems’, in Domb, C., J. L. Lebowitz, eds., ‘Phase transitions and critical phenomena’, volume 16 (Academic Press, London), pp. 1–176

    Google Scholar 

  41. Gompper, G., S. Zschocke (1992): ‘Ginzburg-Landau theory of oil-water-surfactant mixtures’, Phys. Rev. A 46, pp. 4836–4851

    Article  ADS  Google Scholar 

  42. Góźdź, W., R. Hołyst (1996): ‘High genus periodic gyroid surfaces of nonpositive Gaussian curvature’, Phys. Rev. Lett. 76, pp. 2726–2729

    Article  Google Scholar 

  43. Góźdź, W., R. Hołyst (1996): ‘Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions’, Phys. Rev. E 54, pp. 5012–5027

    Article  Google Scholar 

  44. Große-Brauckmann, K. (1997): ‘On gyroid interfaces’, J. Colloid Interface Sci. 187, pp. 418–428

    Article  Google Scholar 

  45. Hajduk, D. A., P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters (1994): ‘The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers’, Macromolecules 27, pp. 4063–4075

    Article  ADS  Google Scholar 

  46. Hajduk, D. A., P. E. Harper, S. M. Gruner, C. C. Honeker, E. L. Thomas, L. J. Fetters (1995): ‘A reevaluation of bicontinuous cubic phases in starblock copolymers’, Macromolecules 28, pp. 2570–2573

    Article  ADS  Google Scholar 

  47. Helfrich, W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’, Z. Naturforsch. C 28, pp. 693–703

    Google Scholar 

  48. Helfrich, W. (1981): ‘Amphiphilic mesophases made of defects’, in Balian, R., M. Kleman, J.-P. Poirier, eds., ‘Physics of Defects’, Les Houches Summer School 1980 (North Holland, Amsterdam)

    Google Scholar 

  49. Helfrich, W. (1985): ‘Effect of thermal undulations on the rigidity of fluid membranes and interfaces’, J. Phys. France 46, pp. 1263–1268

    Article  Google Scholar 

  50. Helfrich, W., H. Rennschuh (1990): ‘Landau theory of the lamellar-to-cubic phase transition’, J. Phys. (Paris) Colloq. 51, pp. 189–195

    Article  Google Scholar 

  51. Hildebrandt, S., A. Tromba (1996): Kugel, Kreis und Seifenblasen. Optimale Formen in Geometrie und Natur (Birkhäuser Verlag, Basel)

    MATH  Google Scholar 

  52. Jahn, W., R. Strey (1988): ‘Microstructure of microemulsions by freeze fracture microscopy’, J. Phys. Chem. 92, p. 2294

    Article  Google Scholar 

  53. Jakobs, B., T. Scottmann, R. Strey, J. Allgaier, L. Willner, D. Richter (1999): ‘Amphiphilic block coloymers as efficiency boosters for microemulsions’, Langmuir 15, pp. 6707–6711

    Article  Google Scholar 

  54. Jost, J. (1994): Differentialgeometrie und Minimalflächen (Springer-Verlag, Berlin)

    MATH  Google Scholar 

  55. Karcher, H. (1989): ‘The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions’, Manuscripta Math. 64, pp. 291–357

    Article  MATH  MathSciNet  Google Scholar 

  56. Karcher, H., K. Polthier (1996): ‘Construction of triply periodic minimal surfaces’, Phil. Trans. R. Soc. Lond. A 354, pp. 2077–2104

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Koch, E., W. Fischer (1988): ‘On 3-periodic minimal surfaces with non-cubic symmetry’, Z. Kristallogr. 183, pp. 129–152

    MATH  MathSciNet  Google Scholar 

  58. Kresge, C. T., M. E. Leonowicz, W. J. Roth, J. C. Vartulli, J. S. Beck (1992): ‘Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism’, Nature 359, pp. 710–712

    Article  ADS  Google Scholar 

  59. Kunieda, H., K. J. Shinoda (1982): ‘Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature)’, J. Dispersion Sci. Technol. 3, p. 233

    Article  Google Scholar 

  60. Landau, L. D., E. M. Lifshitz (1970): Theory of elasticity, volume 7 of Course of Theoretical Physics (Pergamon Press, Oxford), 2nd edition

    Google Scholar 

  61. Landh, T. (1995): ‘From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers’, FEBS Letters 369, pp. 13–17

    Article  Google Scholar 

  62. Lidin, S., S.T. Hyde, B.W. Ninham (1990): ‘Exact construction of periodic minimal surfaces: the I-WP surface and its isometries’, J. Phys. France 51, pp. 801–813

    Article  MathSciNet  Google Scholar 

  63. Lipowsky, R. (1991): ‘The conformation of membranes’, Nature 349, pp. 475–481

    Article  ADS  Google Scholar 

  64. Lipowsky, R., E. Sackmann (1995): Structure and Dynamics of Membranes, volume 1A and 1B of Handbookof biological physics (Elsevier, Amsterdam)

    MATH  Google Scholar 

  65. Longley, W., T. J. McIntosh (1983): ‘A bicontinuous tetrahedral structure in a liquid-crystalline lipid’, Nature 303, pp. 612–614

    Article  ADS  Google Scholar 

  66. Luecke, H., H.-T. Richter, J. K. Lanyi (1998): ‘Proton transfer pathways in bacteriorhodopsin at 2.3 Ångstrom resolution’, J. Struct. Biol. 121, pp. 82–91

    Article  Google Scholar 

  67. Luzzati, V., P. A. Spegt (1967): ‘Polymorphism of lipids’, Nature 215, pp. 701–704

    Article  ADS  Google Scholar 

  68. Luzzati, V., R. Vargas, P. Mariani, A. Gulik, H. Delacroix (1993): ‘Cubic phases of lipidcontaining systems’, J. Mol. Biol. 229, pp. 540–551

    Article  Google Scholar 

  69. Mackay, A. L., H. Terrones (1991): ‘Diamond from graphite’, Nature 352, p. 762

    Article  ADS  Google Scholar 

  70. Mann, S., G. A. Ozin (1996): ‘Synthesis of inorganic materials with complex form’, Nature 382, pp. 313–318

    Article  ADS  Google Scholar 

  71. Matsen, M.W., F. S. Bates (1996): ‘Unifying weak-and strong-segregation block copolymer theories’, Macromolecules 29, pp. 1091–1098

    Article  ADS  Google Scholar 

  72. Mitchell, D. J., G. J. T. Tiddy, L. Waring, T. Bostock, M. P. McDonald (1983): ‘Phase behaviour of polyoxyethylene surfactants with water’, J. Chem. Soc. Faraday Trans. 79, pp. 975–1000

    Article  Google Scholar 

  73. Morse, D. C. (1994): ‘Topological instabilities and phase behavior of fluid membranes’, Phys. Rev. E 50, pp. R2423–R2426

    Article  ADS  Google Scholar 

  74. Morse, D. C. (1997): ‘Entropy and fluctuations of monolayers, membranes, and microemulsions’, Curr. Opin. Coll. Interface Sci. 2, pp. 365–372

    Article  Google Scholar 

  75. Nelson, D., T. Piran, S. Weinberg, eds. (1989): Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore)

    Google Scholar 

  76. Olsson, U., U. Würz, R. Strey (1993): ‘Cylinders and bilayers in a ternary nonionic surfactant system’, J. Phys. Chem. 97, pp. 4535–4539

    Article  Google Scholar 

  77. Pebay-Peyroula, E., G. Rummel, J. P. Rosenbusch, E. M. Landau (1997): ‘X-ray structure of bacteriorhodopsin at 2.5 Ångstroms from the microcrystals grown in lipidic cubic phases’, Science 277, pp. 1676–1681

    Article  Google Scholar 

  78. Peliti, L. (1996): ‘Amphiphilic membranes’, in David, F., P. Ginsparg, J. Zinn-Justin, eds., ‘Fluctuating Geometries in Statistical Mechanics and Field Theory’, (North-Holland, Amsterdam), pp. 195–285

    Google Scholar 

  79. Peliti, L., S. Leibler (1985): ‘Effects of thermal fluctuations on systems with small surface tension’, Phys. Rev. Lett. 54, pp. 1690–1693

    Article  ADS  Google Scholar 

  80. Pieranski, P., P. Sotta, D. Rohe, M. Imperor-Clerc (2000): ‘Devil’s staircase-type faceting of a cubic lyotropic liquid crystal’, Phys. Rev. Lett. 84, pp. 2409–2412

    Article  ADS  Google Scholar 

  81. Pieruschka, P., S. Marcelja (1992): ‘Statistical mechanics of random bicontinuous phases’, J. Phys. II France 2, p. 235

    Article  Google Scholar 

  82. Pieruschka, P., S. A. Safran (1993): ‘Random interfaces and the physics of microemulsions’, Europhys. Lett. 22, p. 625

    Article  ADS  Google Scholar 

  83. Pieruschka, P., S. A. Safran (1995): ‘Random interface model for sponge phases’, Europhys. Lett. 31, p. 207

    Article  ADS  Google Scholar 

  84. Porod, G. (1951): ‘Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen 1’, Kolloid Z. Z. Polym. 124, p. 83–114

    Google Scholar 

  85. Porte, G. (1992): ‘Lamellar phases and disordered phases of fluid bilayer membranes’, J. Phys.: Condens. Matter 4, pp. 8649–8670

    Article  ADS  Google Scholar 

  86. Porte, G., J. Appell, J. Marignan (1997): ‘Comment on “light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling”’, Phys. Rev. E 56, pp. 1276–1277

    Article  ADS  Google Scholar 

  87. Porte, G., M. Delsanti, I. Billard, M. Skouri, J. Appell, J. Marignan, F. Debeauvais (1991): ‘Scaling laws for some physical properties of the L 3 (sponge) phase’, J. Phys. II France 1, p. 1101

    Article  Google Scholar 

  88. Qiu, H., M. Caffrey (2000): ‘The phase diagram of the monoolein/water system: metastability and equilibrium aspects’, Biomaterials 21, pp. 223–234

    Article  Google Scholar 

  89. Roux, D., M. E. Cates, U. Olsson, R. C. Ball, F. Nallet, A. M. Bellocq (1990): ‘Light scattering from a surfactant’ sponge’ phase: Evidence for a hidden symmetry’, Europhys. Lett. 11, p. 229

    Article  ADS  Google Scholar 

  90. Roux, D., C. Coulon, M. E. Cates (1992): ‘Sponge phases in surfactant solutions’, J. Phys. Chem. 96, p. 4174

    Article  Google Scholar 

  91. Roux, D., F. Nallet, C. Coulon, M. E. Cates (1996): ‘Comment on “thermodynamics of the L 3 (sponge) phase in the flexible surface model”’, J. Phys. II France 6, pp. 91–93

    Article  Google Scholar 

  92. Safran, S. A. (1999): ‘Curvature elasticity of thin films’, Adv. Phys. 48, pp. 395–448

    Article  ADS  Google Scholar 

  93. Safran, S. A., D. Roux, M. E. Cates, D. Andelman (1986): ‘Origin of middle-phase microemulsions’, Phys. Rev. Lett. 57, p. 491

    Article  ADS  Google Scholar 

  94. Safran, S. A., L. A. Turkevich (1983): ‘Phase diagrams for microemulsions’, Phys. Rev. Lett. 50, pp. 1930–1933

    Article  ADS  Google Scholar 

  95. Safran, S. A., L. A. Turkevich, P. Pincus (1984): ‘Cylindrical microemulsion: a polymer-like phase?’, J. Physique-LETTRES 45, pp. L69–L74

    Article  Google Scholar 

  96. Schoen, A. H. (1970): ‘Minimal surfaces’, NASA Technical Note D-5541, Washington, D.C.

    Google Scholar 

  97. Schwarz, U. S., G. Gompper (1999): ‘A systematic approach to bicontinuous cubic phases in ternary amphiphilic systems’, Phys. Rev. E 59, pp. 5528–5541

    Article  ADS  Google Scholar 

  98. Schwarz, U. S., G. Gompper (2000): ‘Stability of bicontinuous cubic phases in ternary amphiphilic systems’, J. Chem. Phys. 112, pp. 3792–3802

    Article  ADS  Google Scholar 

  99. Schwarz, U. S., G. Gompper (2000): ‘Stability of inverse bicontinuous cubic phases in lipid-water mixtures’, Phys. Rev. Lett. 85, pp. 1472–1475

    Article  ADS  Google Scholar 

  100. Schwarz, U. S., G. Gompper (2001): ‘Bending frustration of lipid-water mesophases based on cubic minimal surfaces’, Langmuir 17, pp. 2084–2096

    Article  Google Scholar 

  101. Schwarz, U. S., K. Swamy, G. Gompper (1996): ‘The lamellar-to-isotropic transition in ternary amphiphilic systems’, Europhys. Lett. 36, pp. 117–122

    Article  ADS  Google Scholar 

  102. Scriven, L. E. (1976): ‘Equilibrium bicontinuous structure’, Nature 263, pp. 123–125

    Article  ADS  Google Scholar 

  103. Seddon, J. M., R. H. Templer (1995): ‘Polymorphism of lipid-water systems’, in Lipowsky, R., E. Sackmann, eds., ‘Structure and dynamics of membranes-from cells to vesicles’, volume 1A of Handbookof biological physics (Elsevier, Amsterdam), pp. 97–160

    Chapter  Google Scholar 

  104. Seifert, U. (1997): ‘Configurations of fluid membranes and vesicles’, Adv. Phys. 46, pp. 13–137

    Article  ADS  Google Scholar 

  105. Senechal, M. (1990): Crystalline symmetries-an informal mathematical introduction (Adam Hilger, Bristol)

    MATH  Google Scholar 

  106. Shmueli, U., ed. (1996): International tables for crystallography. Volume B: Reciprocal space (Kluwer Academic Publishers, Dordrecht)

    Google Scholar 

  107. Strey, R., W. Jahn, M. Skouri, G. Porte, J. Marignan, U. Olsson (1992): ‘Fluid membranes in the water/NaCl-AOT system: A study combining small-angle neutron scattering, electron microscopy and NMR self-diffusion’, in Chen, S.-H., J. S. Huang, P. Tartaglia, eds., ‘Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution’, (Kluwer, Dordrecht), pp. 351–363

    Google Scholar 

  108. Strey, R., R. Schomäcker, D. Roux, F. Nallet, U. Olsson (1990): ‘Dilute lamellar and L 3 phases in the binarywater-C 12 E 5 system’, J. Chem. Soc. Faraday Trans. 86, pp. 2253–2261

    Article  Google Scholar 

  109. Strey, R., R. Schomäcker, D. Roux, F. Nallet, U. Olsson (1990): ‘On the dilute lamellar and L 3 phases in the binary water-C12E5 system’, J. Chem. Soc. Faraday Trans. 86, p. 2253

    Article  Google Scholar 

  110. Templer, R. H., J. M. Seddon, N. A. Warrender, A. Syrykh, Z. Huang, R. Winter, J. Erbes (1998): ‘Inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. the effect of chain length, hydration, and temperature’, J. Phys. Chem. B 102, pp. 7251–7261

    Article  Google Scholar 

  111. Teubner, M. (1990): ‘Scattering from two-phase random media’, J. Chem. Phys. 92, p. 4501

    Article  ADS  Google Scholar 

  112. Teubner, M. (1991): ‘Level surfaces of gaussian random fields and microemulsions’, Europhys. Lett. 14, p. 403

    Article  ADS  Google Scholar 

  113. Teubner, M., R. Strey (1987): ‘Origin of the scattering peak in microemulsions’, J. Chem. Phys. 87, p. 3195

    Article  ADS  Google Scholar 

  114. Thomas, E. L., D. B. Alward, D. J. Kinning, D. C. Martin, D. L. Handlin, L. J. Fetters (1986): ‘Ordered bicontinuous double-diamond structure of star block copolymers-a new equilibrium microdomain morphology’, Macromolecules 19, pp. 2197–2202

    Article  ADS  Google Scholar 

  115. von Schnering, H. G., R. Nesper (1991): ‘Nodal surfaces of Fourier series: fundamental invariants of structured matter’, Z. Phys. B 83, pp. 407–412

    Article  ADS  Google Scholar 

  116. Wang, Z.-G., S. A. Safran (1990): ‘Curvature elasticity of ordered bicontinuous structures’, Europhys. Lett. 11, pp. 425–430

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwarz, U., Gompper, G. (2002). Bicontinuous Surfaces in Self-assembling Amphiphilic Systems. In: Mecke, K., Stoyan, D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45782-8_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45782-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44203-5

  • Online ISBN: 978-3-540-45782-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics