Bicontinuous Surfaces in Self-assembling Amphiphilic Systems

  • Ulrich Schwarz
  • Gerhard Gompper
Part of the Lecture Notes in Physics book series (LNP, volume 600)


Amphiphiles are molecules which have both hydrophilic and hydrophobic parts. In water- and/or oil-like solvent, they self-assemble into extended sheet-like structures due to the hydrophobic effect. The free energy of an amphiphilic system can be written as a functional of its interfacial geometry, and phase diagrams can be calculated by comparing the free energies following from different geometries. Here we focus on bicontinuous structures, where one highly convoluted interface spans the whole sample and thereby divides it into two separate labyrinths. The main models for surfaces of this class are triply periodic minimal surfaces, their constant mean curvature and parallel surface companions, and random surfaces. We discuss the geometrical properties of each of these types of surfaces and how they translate into the experimentally observed phase behavior of amphiphilic systems.


Minimal Surface Phase Behavior Topology Index Spontaneous Curvature Weierstrass Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, R. J., ed. (1981): The Geometry of Random Fields (Wiley, Chichester)zbMATHGoogle Scholar
  2. 2.
    Anderson, D. M., H. T. Davis, L. E. Scriven, J. C. C. Nitsche (1990): ‘Periodic surfaces of prescribed mean curvature’, Adv. Chem. Phys. 77, pp. 337–397CrossRefGoogle Scholar
  3. 3.
    Anderson, D. M., S. M. Gruner, S. Leibler (1988): ‘Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals’, Proc. Natl. Acad. Sci. USA 85, pp. 5364–5368ADSCrossRefGoogle Scholar
  4. 4.
    Berk, N. F. (1987): ‘Scattering properties of a model bicontinuous structure with a well defined length scale’, Phys. Rev. Lett. 58, p. 2718ADSCrossRefGoogle Scholar
  5. 5.
    Berk, N. F. (1991): ‘Scattering properties of the leveled-wave model of random morphologies’, Phys. Rev. A 44, p. 5069ADSCrossRefGoogle Scholar
  6. 6.
    Bruinsma, R. (1992): ‘Elasticity and excitations of minimal crystals’, J. Phys. II France 2, pp. 425–451CrossRefGoogle Scholar
  7. 7.
    Cai, W., T. C. Lubensky, P. Nelson, T. Powers (1994): ‘Measure factors, tension and correlations of fluid membranes’, J. Phys. II France 4, pp. 931–949CrossRefGoogle Scholar
  8. 8.
    Canham, P. B. (1970): ‘The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell’, J. Theor. Biol. 26, p. 61CrossRefGoogle Scholar
  9. 9.
    Cates, M. E., D. Roux, D. Andelman, S. T. Milner, S. A. Safran (1988): ‘Random surface model for the L 3-phase of dilute surfactant solutions’, Europhys. Lett. 5, p. 733ADSCrossRefGoogle Scholar
  10. 10.
    Charvolin, J., J. F. Sadoc (1990): ‘Structures built by amphiphiles and frustrated fluid films’, J. Phys. (Paris) Colloq. 51, pp. 83–96CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, S.-H., D. D. Lee, K. Kimishima, H. Jinnai, T. Hashimoto (1996): ‘Measurement of the Gaussian curvature of the surfactant film in an isometric bicontinuous one-phase microemulsion’, Phys. Rev. E 54, pp. 6526–6531ADSCrossRefGoogle Scholar
  12. 12.
    Cvijovic, D., J. Klinowski (1994): ‘The computation of the triply periodic I-WP minimal surface’, Chem. Phys. Lett. 226, pp. 93–99ADSCrossRefGoogle Scholar
  13. 13.
    Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1995): ‘Light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling’, Phys. Rev. E 52, pp. 3266–3269ADSCrossRefGoogle Scholar
  14. 14.
    Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1995): ‘Thermodynamics of the L 3 (sponge) phase in the flexible surface model’, J. Phys. II France 5, pp. 199–215CrossRefGoogle Scholar
  15. 15.
    Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1996): ‘Reply to “comment on ‘thermodynamics of the L 3 (sponge) phase in the flexible surface model’ ”’, J. Phys. II France 6, pp. 95–96CrossRefGoogle Scholar
  16. 16.
    Daicic, J., U. Olsson, H. Wennerström, G. Jerke, P. Schurtenberger (1997): ‘Reply to “comment on ‘light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling’ ”’, Phys. Rev. E 56, pp. 1278–127ADSCrossRefGoogle Scholar
  17. 17.
    David, F. (1989): ‘Geometry and field theory of random surfaces and membranes’, in Nelson, D., T. Piran, S. Weinberg, eds., ‘Statistical Mechanics of Membranes and Surfaces’, (World Scientific, Singapore), pp. 157–223Google Scholar
  18. 18.
    David, F., P. Ginsparg, J. Zinn-Justin, eds. (1996): Fluctuating geometries in statistical mechanics and field theory (Elsevier, Amsterdam)Google Scholar
  19. 19.
    Deng, Y., M. Marko, K. F. Buttle, A. Leith, M. Mieczkowski, C. A. Mannella (1999): ‘Cubic membrane structure in amoeba (chaos carolinensis) mitochondria determined by electron microscopic tomography’, J. Struct. Biol. 127, pp. 231–239CrossRefGoogle Scholar
  20. 20.
    Düsing, P. M., R. H. Templer, J. M. Seddon (1997): ‘Quantifying packing frustration energy in inverse lyotropic mesophases’, Langmuir 13, pp. 351–359CrossRefGoogle Scholar
  21. 21.
    Endo, H., J. Allgaier, G. Gompper, B. Jakobs, M. Monkenbusch, D. Richter, T. Sottmann, R. Strey (2000): ‘Membrane decoration by amphiphilic block copolymers in bicontinuous microemulsions’, Phys. Rev. Lett. 85, pp. 102–105ADSCrossRefGoogle Scholar
  22. 22.
    Endo, H., M. Mihailescu, M. Monkenbusch, J. Allgaier, G. Gompper, D. Richter, B. Jakobs, T. Sottmann, R. Strey, I. Grillo (2001): ‘Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures’, J. Chem. Phys. 115, pp. 580–600ADSCrossRefGoogle Scholar
  23. 23.
    Fischer, W., E. Koch (1987): ‘On 3-periodic minimal surfaces’, Z. Kristallogr. 179, pp. 31–52zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Fischer, W., E. Koch (1996): ‘Spanning minimal surfaces’, Phil. Trans. R. Soc. Lond. A 354, pp. 2105–2142zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Fodgen, A., S. T. Hyde (1992): ‘Parametrization of triply periodic minimal surfaces. I. Mathematical basis of the construction algorithm for the regular class’, Acta Cryst. A 48, pp. 442–451CrossRefGoogle Scholar
  26. 26.
    Fodgen, A., S. T. Hyde (1999): ‘Continuous transformations of cubic minimal surfaces’, Eur. Phys. J. B 7, pp. 91–104ADSCrossRefGoogle Scholar
  27. 27.
    Fontell, K. (1990): ‘Cubic phases in surfactant and surfactant-like lipid systems’, Colloid Polym. Sci. 268, pp. 264–85CrossRefGoogle Scholar
  28. 28.
    Golubović, L. (1994): ‘Passages and droplets in lamellar fluid membrane phases’, Phys. Rev. E 50, pp. R2419–R2422ADSCrossRefGoogle Scholar
  29. 29.
    Gompper, G., H. Endo, M. Mihailescu, J. Allgaier, M. Monkenbusch, D. Richter, B. Jakobs, T. Sottmann, R. Strey (2001): ‘Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions’, Europhys. Lett. 56, pp. 683–689ADSCrossRefGoogle Scholar
  30. 30.
    Gompper, G., J. Goos (1994): ‘Fluctuating interfaces in microemulsion and sponge phases’, Phys. Rev. E 50, pp. 1325–1335ADSCrossRefGoogle Scholar
  31. 31.
    Gompper, G., J. Goos (1995): ‘Fluctuations and phase behavior of passages in a stack of fluid membranes’, J. Phys. II France 5, pp. 621–634CrossRefGoogle Scholar
  32. 32.
    Gompper, G., M. Kraus (1993): ‘Ginzburg-Landau theory of ternary amphiphilic systems II: Monte Carlo Simulations’, Phys. Rev. E 47, p. 4301ADSCrossRefGoogle Scholar
  33. 33.
    Gompper, G., D. M. Kroll (1996): ‘Random surface discretizations and the renormalization of the bending rigidity’, J. Phys. I France 6, pp. 1305–1320CrossRefGoogle Scholar
  34. 34.
    Gompper, G., D. M. Kroll (1997): ‘Fluctuations of polymerized, fluid and hexatic membranes: continuum models and simulations’, Curr. Opin. Colloid Interface Sci. 2, pp. 373–381CrossRefGoogle Scholar
  35. 35.
    Gompper, G., D. M. Kroll (1997): ‘Network models of fluid, hexatic and polymerized membranes’, J. Phys. Condens. Matter 9, pp. 8795–8834ADSCrossRefGoogle Scholar
  36. 36.
    Gompper, G., D. M. Kroll (1998): ‘Membranes with fluctuating topology: Monte carlo simulations’, Phys. Rev. Lett. 81, pp. 2284–2287ADSCrossRefGoogle Scholar
  37. 37.
    Gompper, G., D. M. Kroll (2000): ‘Statistical mechanics of membranes: Freezing, undulations, and topology fluctuations’, J. Phys. Condens. Matter 12, pp. 29–37ADSCrossRefGoogle Scholar
  38. 38.
    Gompper, G., D. Richter, R. Strey (2001): ‘Amphiphilic block copolymers in oil-water-surfactant mixtures: Efficiency boosting, structure, phase behavior, and mechanism’, J. Phys. Condens. Matter 13, pp. 9055–9074ADSCrossRefGoogle Scholar
  39. 39.
    Gompper, G., M. Schick (1990): ‘Correlation between structural and interfacial properties of amphiphilic systems’, Phys. Rev. Lett. 65, pp. 1116–1119ADSCrossRefGoogle Scholar
  40. 40.
    Gompper, G., M. Schick (1994): ‘Self-assembling amphiphilic systems’, in Domb, C., J. L. Lebowitz, eds., ‘Phase transitions and critical phenomena’, volume 16 (Academic Press, London), pp. 1–176Google Scholar
  41. 41.
    Gompper, G., S. Zschocke (1992): ‘Ginzburg-Landau theory of oil-water-surfactant mixtures’, Phys. Rev. A 46, pp. 4836–4851ADSCrossRefGoogle Scholar
  42. 42.
    Góźdź, W., R. Hołyst (1996): ‘High genus periodic gyroid surfaces of nonpositive Gaussian curvature’, Phys. Rev. Lett. 76, pp. 2726–2729CrossRefGoogle Scholar
  43. 43.
    Góźdź, W., R. Hołyst (1996): ‘Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions’, Phys. Rev. E 54, pp. 5012–5027CrossRefGoogle Scholar
  44. 44.
    Große-Brauckmann, K. (1997): ‘On gyroid interfaces’, J. Colloid Interface Sci. 187, pp. 418–428CrossRefGoogle Scholar
  45. 45.
    Hajduk, D. A., P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters (1994): ‘The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers’, Macromolecules 27, pp. 4063–4075CrossRefADSGoogle Scholar
  46. 46.
    Hajduk, D. A., P. E. Harper, S. M. Gruner, C. C. Honeker, E. L. Thomas, L. J. Fetters (1995): ‘A reevaluation of bicontinuous cubic phases in starblock copolymers’, Macromolecules 28, pp. 2570–2573CrossRefADSGoogle Scholar
  47. 47.
    Helfrich, W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’, Z. Naturforsch. C 28, pp. 693–703Google Scholar
  48. 48.
    Helfrich, W. (1981): ‘Amphiphilic mesophases made of defects’, in Balian, R., M. Kleman, J.-P. Poirier, eds., ‘Physics of Defects’, Les Houches Summer School 1980 (North Holland, Amsterdam)Google Scholar
  49. 49.
    Helfrich, W. (1985): ‘Effect of thermal undulations on the rigidity of fluid membranes and interfaces’, J. Phys. France 46, pp. 1263–1268CrossRefGoogle Scholar
  50. 50.
    Helfrich, W., H. Rennschuh (1990): ‘Landau theory of the lamellar-to-cubic phase transition’, J. Phys. (Paris) Colloq. 51, pp. 189–195CrossRefGoogle Scholar
  51. 51.
    Hildebrandt, S., A. Tromba (1996): Kugel, Kreis und Seifenblasen. Optimale Formen in Geometrie und Natur (Birkhäuser Verlag, Basel)zbMATHGoogle Scholar
  52. 52.
    Jahn, W., R. Strey (1988): ‘Microstructure of microemulsions by freeze fracture microscopy’, J. Phys. Chem. 92, p. 2294CrossRefGoogle Scholar
  53. 53.
    Jakobs, B., T. Scottmann, R. Strey, J. Allgaier, L. Willner, D. Richter (1999): ‘Amphiphilic block coloymers as efficiency boosters for microemulsions’, Langmuir 15, pp. 6707–6711CrossRefGoogle Scholar
  54. 54.
    Jost, J. (1994): Differentialgeometrie und Minimalflächen (Springer-Verlag, Berlin)zbMATHGoogle Scholar
  55. 55.
    Karcher, H. (1989): ‘The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions’, Manuscripta Math. 64, pp. 291–357zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Karcher, H., K. Polthier (1996): ‘Construction of triply periodic minimal surfaces’, Phil. Trans. R. Soc. Lond. A 354, pp. 2077–2104zbMATHCrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Koch, E., W. Fischer (1988): ‘On 3-periodic minimal surfaces with non-cubic symmetry’, Z. Kristallogr. 183, pp. 129–152zbMATHMathSciNetGoogle Scholar
  58. 58.
    Kresge, C. T., M. E. Leonowicz, W. J. Roth, J. C. Vartulli, J. S. Beck (1992): ‘Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism’, Nature 359, pp. 710–712ADSCrossRefGoogle Scholar
  59. 59.
    Kunieda, H., K. J. Shinoda (1982): ‘Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature)’, J. Dispersion Sci. Technol. 3, p. 233CrossRefGoogle Scholar
  60. 60.
    Landau, L. D., E. M. Lifshitz (1970): Theory of elasticity, volume 7 of Course of Theoretical Physics (Pergamon Press, Oxford), 2nd editionGoogle Scholar
  61. 61.
    Landh, T. (1995): ‘From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers’, FEBS Letters 369, pp. 13–17CrossRefGoogle Scholar
  62. 62.
    Lidin, S., S.T. Hyde, B.W. Ninham (1990): ‘Exact construction of periodic minimal surfaces: the I-WP surface and its isometries’, J. Phys. France 51, pp. 801–813CrossRefMathSciNetGoogle Scholar
  63. 63.
    Lipowsky, R. (1991): ‘The conformation of membranes’, Nature 349, pp. 475–481ADSCrossRefGoogle Scholar
  64. 64.
    Lipowsky, R., E. Sackmann (1995): Structure and Dynamics of Membranes, volume 1A and 1B of Handbookof biological physics (Elsevier, Amsterdam)zbMATHGoogle Scholar
  65. 65.
    Longley, W., T. J. McIntosh (1983): ‘A bicontinuous tetrahedral structure in a liquid-crystalline lipid’, Nature 303, pp. 612–614ADSCrossRefGoogle Scholar
  66. 66.
    Luecke, H., H.-T. Richter, J. K. Lanyi (1998): ‘Proton transfer pathways in bacteriorhodopsin at 2.3 Ångstrom resolution’, J. Struct. Biol. 121, pp. 82–91CrossRefGoogle Scholar
  67. 67.
    Luzzati, V., P. A. Spegt (1967): ‘Polymorphism of lipids’, Nature 215, pp. 701–704ADSCrossRefGoogle Scholar
  68. 68.
    Luzzati, V., R. Vargas, P. Mariani, A. Gulik, H. Delacroix (1993): ‘Cubic phases of lipidcontaining systems’, J. Mol. Biol. 229, pp. 540–551CrossRefGoogle Scholar
  69. 69.
    Mackay, A. L., H. Terrones (1991): ‘Diamond from graphite’, Nature 352, p. 762ADSCrossRefGoogle Scholar
  70. 70.
    Mann, S., G. A. Ozin (1996): ‘Synthesis of inorganic materials with complex form’, Nature 382, pp. 313–318ADSCrossRefGoogle Scholar
  71. 71.
    Matsen, M.W., F. S. Bates (1996): ‘Unifying weak-and strong-segregation block copolymer theories’, Macromolecules 29, pp. 1091–1098CrossRefADSGoogle Scholar
  72. 72.
    Mitchell, D. J., G. J. T. Tiddy, L. Waring, T. Bostock, M. P. McDonald (1983): ‘Phase behaviour of polyoxyethylene surfactants with water’, J. Chem. Soc. Faraday Trans. 79, pp. 975–1000CrossRefGoogle Scholar
  73. 73.
    Morse, D. C. (1994): ‘Topological instabilities and phase behavior of fluid membranes’, Phys. Rev. E 50, pp. R2423–R2426ADSCrossRefGoogle Scholar
  74. 74.
    Morse, D. C. (1997): ‘Entropy and fluctuations of monolayers, membranes, and microemulsions’, Curr. Opin. Coll. Interface Sci. 2, pp. 365–372CrossRefGoogle Scholar
  75. 75.
    Nelson, D., T. Piran, S. Weinberg, eds. (1989): Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore)Google Scholar
  76. 76.
    Olsson, U., U. Würz, R. Strey (1993): ‘Cylinders and bilayers in a ternary nonionic surfactant system’, J. Phys. Chem. 97, pp. 4535–4539CrossRefGoogle Scholar
  77. 77.
    Pebay-Peyroula, E., G. Rummel, J. P. Rosenbusch, E. M. Landau (1997): ‘X-ray structure of bacteriorhodopsin at 2.5 Ångstroms from the microcrystals grown in lipidic cubic phases’, Science 277, pp. 1676–1681CrossRefGoogle Scholar
  78. 78.
    Peliti, L. (1996): ‘Amphiphilic membranes’, in David, F., P. Ginsparg, J. Zinn-Justin, eds., ‘Fluctuating Geometries in Statistical Mechanics and Field Theory’, (North-Holland, Amsterdam), pp. 195–285Google Scholar
  79. 79.
    Peliti, L., S. Leibler (1985): ‘Effects of thermal fluctuations on systems with small surface tension’, Phys. Rev. Lett. 54, pp. 1690–1693ADSCrossRefGoogle Scholar
  80. 80.
    Pieranski, P., P. Sotta, D. Rohe, M. Imperor-Clerc (2000): ‘Devil’s staircase-type faceting of a cubic lyotropic liquid crystal’, Phys. Rev. Lett. 84, pp. 2409–2412ADSCrossRefGoogle Scholar
  81. 81.
    Pieruschka, P., S. Marcelja (1992): ‘Statistical mechanics of random bicontinuous phases’, J. Phys. II France 2, p. 235CrossRefGoogle Scholar
  82. 82.
    Pieruschka, P., S. A. Safran (1993): ‘Random interfaces and the physics of microemulsions’, Europhys. Lett. 22, p. 625ADSCrossRefGoogle Scholar
  83. 83.
    Pieruschka, P., S. A. Safran (1995): ‘Random interface model for sponge phases’, Europhys. Lett. 31, p. 207CrossRefADSGoogle Scholar
  84. 84.
    Porod, G. (1951): ‘Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen 1’, Kolloid Z. Z. Polym. 124, p. 83–114Google Scholar
  85. 85.
    Porte, G. (1992): ‘Lamellar phases and disordered phases of fluid bilayer membranes’, J. Phys.: Condens. Matter 4, pp. 8649–8670ADSCrossRefGoogle Scholar
  86. 86.
    Porte, G., J. Appell, J. Marignan (1997): ‘Comment on “light scattering from the L 3 (sponge) phase: Evidence against logarithmic corrections to ideal scaling”’, Phys. Rev. E 56, pp. 1276–1277ADSCrossRefGoogle Scholar
  87. 87.
    Porte, G., M. Delsanti, I. Billard, M. Skouri, J. Appell, J. Marignan, F. Debeauvais (1991): ‘Scaling laws for some physical properties of the L 3 (sponge) phase’, J. Phys. II France 1, p. 1101CrossRefGoogle Scholar
  88. 88.
    Qiu, H., M. Caffrey (2000): ‘The phase diagram of the monoolein/water system: metastability and equilibrium aspects’, Biomaterials 21, pp. 223–234CrossRefGoogle Scholar
  89. 89.
    Roux, D., M. E. Cates, U. Olsson, R. C. Ball, F. Nallet, A. M. Bellocq (1990): ‘Light scattering from a surfactant’ sponge’ phase: Evidence for a hidden symmetry’, Europhys. Lett. 11, p. 229ADSCrossRefGoogle Scholar
  90. 90.
    Roux, D., C. Coulon, M. E. Cates (1992): ‘Sponge phases in surfactant solutions’, J. Phys. Chem. 96, p. 4174CrossRefGoogle Scholar
  91. 91.
    Roux, D., F. Nallet, C. Coulon, M. E. Cates (1996): ‘Comment on “thermodynamics of the L 3 (sponge) phase in the flexible surface model”’, J. Phys. II France 6, pp. 91–93CrossRefGoogle Scholar
  92. 92.
    Safran, S. A. (1999): ‘Curvature elasticity of thin films’, Adv. Phys. 48, pp. 395–448ADSCrossRefGoogle Scholar
  93. 93.
    Safran, S. A., D. Roux, M. E. Cates, D. Andelman (1986): ‘Origin of middle-phase microemulsions’, Phys. Rev. Lett. 57, p. 491ADSCrossRefGoogle Scholar
  94. 94.
    Safran, S. A., L. A. Turkevich (1983): ‘Phase diagrams for microemulsions’, Phys. Rev. Lett. 50, pp. 1930–1933ADSCrossRefGoogle Scholar
  95. 95.
    Safran, S. A., L. A. Turkevich, P. Pincus (1984): ‘Cylindrical microemulsion: a polymer-like phase?’, J. Physique-LETTRES 45, pp. L69–L74CrossRefGoogle Scholar
  96. 96.
    Schoen, A. H. (1970): ‘Minimal surfaces’, NASA Technical Note D-5541, Washington, D.C.Google Scholar
  97. 97.
    Schwarz, U. S., G. Gompper (1999): ‘A systematic approach to bicontinuous cubic phases in ternary amphiphilic systems’, Phys. Rev. E 59, pp. 5528–5541ADSCrossRefGoogle Scholar
  98. 98.
    Schwarz, U. S., G. Gompper (2000): ‘Stability of bicontinuous cubic phases in ternary amphiphilic systems’, J. Chem. Phys. 112, pp. 3792–3802ADSCrossRefGoogle Scholar
  99. 99.
    Schwarz, U. S., G. Gompper (2000): ‘Stability of inverse bicontinuous cubic phases in lipid-water mixtures’, Phys. Rev. Lett. 85, pp. 1472–1475ADSCrossRefGoogle Scholar
  100. 100.
    Schwarz, U. S., G. Gompper (2001): ‘Bending frustration of lipid-water mesophases based on cubic minimal surfaces’, Langmuir 17, pp. 2084–2096CrossRefGoogle Scholar
  101. 101.
    Schwarz, U. S., K. Swamy, G. Gompper (1996): ‘The lamellar-to-isotropic transition in ternary amphiphilic systems’, Europhys. Lett. 36, pp. 117–122ADSCrossRefGoogle Scholar
  102. 102.
    Scriven, L. E. (1976): ‘Equilibrium bicontinuous structure’, Nature 263, pp. 123–125ADSCrossRefGoogle Scholar
  103. 103.
    Seddon, J. M., R. H. Templer (1995): ‘Polymorphism of lipid-water systems’, in Lipowsky, R., E. Sackmann, eds., ‘Structure and dynamics of membranes-from cells to vesicles’, volume 1A of Handbookof biological physics (Elsevier, Amsterdam), pp. 97–160CrossRefGoogle Scholar
  104. 104.
    Seifert, U. (1997): ‘Configurations of fluid membranes and vesicles’, Adv. Phys. 46, pp. 13–137ADSCrossRefGoogle Scholar
  105. 105.
    Senechal, M. (1990): Crystalline symmetries-an informal mathematical introduction (Adam Hilger, Bristol)zbMATHGoogle Scholar
  106. 106.
    Shmueli, U., ed. (1996): International tables for crystallography. Volume B: Reciprocal space (Kluwer Academic Publishers, Dordrecht)Google Scholar
  107. 107.
    Strey, R., W. Jahn, M. Skouri, G. Porte, J. Marignan, U. Olsson (1992): ‘Fluid membranes in the water/NaCl-AOT system: A study combining small-angle neutron scattering, electron microscopy and NMR self-diffusion’, in Chen, S.-H., J. S. Huang, P. Tartaglia, eds., ‘Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution’, (Kluwer, Dordrecht), pp. 351–363Google Scholar
  108. 108.
    Strey, R., R. Schomäcker, D. Roux, F. Nallet, U. Olsson (1990): ‘Dilute lamellar and L 3 phases in the binarywater-C 12 E 5 system’, J. Chem. Soc. Faraday Trans. 86, pp. 2253–2261CrossRefGoogle Scholar
  109. 109.
    Strey, R., R. Schomäcker, D. Roux, F. Nallet, U. Olsson (1990): ‘On the dilute lamellar and L 3 phases in the binary water-C12E5 system’, J. Chem. Soc. Faraday Trans. 86, p. 2253CrossRefGoogle Scholar
  110. 110.
    Templer, R. H., J. M. Seddon, N. A. Warrender, A. Syrykh, Z. Huang, R. Winter, J. Erbes (1998): ‘Inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. the effect of chain length, hydration, and temperature’, J. Phys. Chem. B 102, pp. 7251–7261CrossRefGoogle Scholar
  111. 111.
    Teubner, M. (1990): ‘Scattering from two-phase random media’, J. Chem. Phys. 92, p. 4501ADSCrossRefGoogle Scholar
  112. 112.
    Teubner, M. (1991): ‘Level surfaces of gaussian random fields and microemulsions’, Europhys. Lett. 14, p. 403ADSCrossRefGoogle Scholar
  113. 113.
    Teubner, M., R. Strey (1987): ‘Origin of the scattering peak in microemulsions’, J. Chem. Phys. 87, p. 3195ADSCrossRefGoogle Scholar
  114. 114.
    Thomas, E. L., D. B. Alward, D. J. Kinning, D. C. Martin, D. L. Handlin, L. J. Fetters (1986): ‘Ordered bicontinuous double-diamond structure of star block copolymers-a new equilibrium microdomain morphology’, Macromolecules 19, pp. 2197–2202CrossRefADSGoogle Scholar
  115. 115.
    von Schnering, H. G., R. Nesper (1991): ‘Nodal surfaces of Fourier series: fundamental invariants of structured matter’, Z. Phys. B 83, pp. 407–412CrossRefADSGoogle Scholar
  116. 116.
    Wang, Z.-G., S. A. Safran (1990): ‘Curvature elasticity of ordered bicontinuous structures’, Europhys. Lett. 11, pp. 425–430ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ulrich Schwarz
    • 1
  • Gerhard Gompper
    • 2
  1. 1.Max-Planck-Institut für Kolloid- und GrenzflächenforschungPotsdam
  2. 2.Institut für FestkörperforschungForschungszentrum JülichJülich

Personalised recommendations