Advertisement

Nanotomography: Real-Space Volume Imaging with Scanning Probe Microscopy

  • Robert Magerle
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 600)

Abstract

Nanotomography is a general procedure for high-resolution volume imaging based on scanning probe microscopy (SPM). The approach is similar to sputter depth profiling. The specimen under study is eroded step by step and the remaining material is imaged with scanning probe microscopy at each freshly exposed surface. From the resulting series of images the specimen’s three-dimensional microstructure can be reconstructed with methods adopted from computed tomography. This approach is expected to be a simple and versatile means for real-space volume imaging of various materials and physical properties with micron, nanometer, and even atomic resolution.

Keywords

Block Copolymer Scanning Tunneling Microscopy Triblock Copolymer Scanning Probe Microscopy Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    for instance from SCANCO Medical AG (Switzerland), http://www.scanco.ch.
  2. 2.
    McNulty, I., W.S. Haddad, J.E. Trebes, E.H. Anderson (1995): ‘Soft x-ray scanning microtomography with submicrometer resolution’. Rev. Sci. Instr. 66, pp. 1431–1433.CrossRefADSGoogle Scholar
  3. 3.
    Blümler, P., B. Blümich, R.E. Botto, E. Fukushima (eds.) (1998): Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware. (Wiley)Google Scholar
  4. 4.
    White, W.R., P. Wiltzius (1995): ‘Real Space Measurement of Structure in Phase Separating Binary Fluid Mixtures’. Phys. Rev. Lett. 75, pp. 3012–3015.CrossRefADSGoogle Scholar
  5. 5.
    Jinnai, H., T. Koga, Y. Nishikawa, T. Hashimoto, S.T. Hyde (1997): ‘Curvature Determination of Spinodal Interface in a Condensed Matter System’. Phys. Rev. Lett. 78, pp. 2248–2251.CrossRefADSGoogle Scholar
  6. 6.
    Sjöstrand, F.S. (1958): ‘Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by 3-dimensional reconstructions from serial sections’. J. Ultrastructure Research 2, pp. 122–170.CrossRefGoogle Scholar
  7. 7.
    Gaunt, W.A., P.N. Gaunt (1978): Three Dimensional Reconstruction in Biology. (Pitman Medical, Kent)Google Scholar
  8. 8.
    Spontak, R.J., M.C. Williams, and D.A. Agard (1988): ‘Three-dimensional study of cylindrical morphology in a styrene-butadiene-styrene block copolymer’. Polymer 29, pp. 387–395.CrossRefGoogle Scholar
  9. 9.
    Frank, J. (1996): Three-dimensional electron microscopy of macromolecular assemblies. (Academic Press, San Diego)Google Scholar
  10. 10.
    Miller, M.K., G.D.W. Smith (1989): Atom-Probe Microanalysis: Principles and Applications to Materials. (Materials Research Society, Pittsburgh)Google Scholar
  11. 11.
    Miller, M.K. (2000): Atom Probe Tomography. (Plenum, New York)Google Scholar
  12. 12.
    Binnig, G., H. Rohrer, C. Gerber, E. Weibel (1982): ‘Surface Studies by Scanning Tunneling Microscopy’. Phys. Rev. Lett. 49, pp. 57–61.CrossRefADSGoogle Scholar
  13. 13.
    Binnig, G., C.F. Quate, C. Gerber (1986): ‘Atomic Force Microscope’. Phys. Rev. Lett. 56, pp. 930–933.CrossRefADSGoogle Scholar
  14. 14.
    Wiesendanger, R. (ed.) (1995): Scanning Probe Microscopy and Spectroscopy: Methods and Applications. (Cambridge University Press)Google Scholar
  15. 15.
    Wiesendanger, R. (ed.) (1998): Scanning Probe Microscopy: Analytical Methods. (Springer)Google Scholar
  16. 16.
    Bonnell, D.A. (ed.) (2000): Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications. (John Wiley & Sons)Google Scholar
  17. 17.
    Born, G. (1876): ‘Ueber die Nasenhölen und den Thränennasengang der Amphibien’. Morphologisches Jahrbuch 2, pp. 578–580.Google Scholar
  18. 18.
    Born, G. (1883): ‘Plattenmodellirmethode’. Archiv für mikroskopische Anatomie 22, pp. 585–599.Google Scholar
  19. 19.
    Magerle, R. (1999): ‘Nanotomography’. Patent publications DE 198 59 877 A 1 and WO 00/39569.Google Scholar
  20. 20.
    Magerle, R. (2000): ‘Nanotomography’. Phys. Rev. Lett. 85, pp. 2749–2752.CrossRefADSGoogle Scholar
  21. 21.
    Wittmaack, K. (1991): In: Sputtering by Particle Bombardment III, ed. by R. Behrisch and K. Wittmaack (Springer, Berlin), pp. 161–256.Google Scholar
  22. 22.
    Carter, G., B. Navinšek, J.L. Whitton (1983): In: Sputtering by Particle Bombardment II, ed. by R. Behrisch (Springer, Berlin), pp. 231–269.Google Scholar
  23. 23.
    Konrad, M., A. Knoll, G. Krausch, R. Magerle (2000): ‘Volume Imaging of an Ultrathin SBS Triblock Copolymer Film’. Macromolecules 33, pp. 5518–5523.CrossRefADSGoogle Scholar
  24. 24.
    Zhong, Q., D. Inniss, K. Kjoller, V.B. Elings (1993): ‘Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy’. Surf. Sci. 290, pp. L688–L692.CrossRefGoogle Scholar
  25. 25.
    Quist, A.P., J. Ahlbom, C.T. Reimann, B.U.R. Sundqvist (1994): ‘Scanning force microscopy studies of surface defects induced by incident energetic macromolecular ion’. Nucl. Instr. Meth. B 88, pp. 164–169.ADSGoogle Scholar
  26. 26.
    Magonov, S.N., J. Cleveland, V. Elings, D. Denley, M.-H. Whangbo (1997): ‘Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer’. Surf. Sci. 389, pp. 201–211.CrossRefADSGoogle Scholar
  27. 27.
    Kim, G., M. Libera (1998): ‘Morphological Development in Solvent-Cast Polystyrene-Polybutadiene-Polystyrene (SBS) Triblock Copolymer Thin Films’. Macromolecules 31, pp. 2569–2577.CrossRefADSGoogle Scholar
  28. 28.
    Brown, L.G. (1992): ‘A Survey of image registration techniques’. ACM Computing Surveys 24, pp. 325–376.CrossRefGoogle Scholar
  29. 29.
    Rehse, N., M. Konrad, A. Knoll, R. Magerle, G. Krausch (2000): ‘Surface Reconstruction of an Ordered Fluid: An Analogy with Crystal Surfaces’. Phys. Rev. Lett. 87, p. 035505.CrossRefADSGoogle Scholar
  30. 30.
    Krausch, G. (1995): ‘Surface induced self-assembly in thin polymer films’. Mat. Sci. Eng. Rep. R14, pp. 1–94.Google Scholar
  31. 31.
    Magnussen, O.M, M.R. Vogt (2000): ‘Dynamics of Individual Atomic Kinks during Crystal Dissolution’. Phys. Rev. Lett. 85, pp. 357–360.CrossRefADSGoogle Scholar
  32. 32.
    Itaya, K. (1998): ‘In situ scanning tunneling microscopy in electrolyte solutions’. Progress in Surface Science 58, pp. 121–148.CrossRefADSGoogle Scholar
  33. 33.
    Paloczi, G.T., B.L. Smith, P.K. Hansma, D.A. Walters, M.A. Wendmann (1998): ‘Rapid imaging of calcite crystal growth using atomic force microscopy with small cantilevers’. Appl. Phys. Lett. 73, pp. 1658–1660CrossRefADSGoogle Scholar
  34. 34.
    Viani, M.B., T.E. Schäffer, G.T. Paloczi, L.I. Pietrasanta, B.L. Smith, J.B. Thompson, M. Richter, M. Rief, H.E. Gaub, K.W. Plaxco, A.N. Cleland, H.G. Hansma, P.K. Hansma (1999): ‘Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers’. Rev. Sci. Instr. 70, pp. 4300–4303.CrossRefADSGoogle Scholar
  35. 35.
    Sulchek, T., R. Hsieh, J.D. Adams, S.C. Minne, C.F. Quate, D.M. Adderton (2000): ‘High-speed atomic force microscopy in liquid’. Rev. Sci. Instr. 71, pp. 2097–2099.CrossRefADSGoogle Scholar
  36. 36.
    Köhler, M. (1998): Ätzverfahren für die Mikrotechnik. (Wiley-VCH, Weinheim)CrossRefGoogle Scholar
  37. 37.
    Zavyalov, V.V., J.S. McMurray, C.C. Williams (1999): ‘Scanning capacitance microscope methodology for quantitative analysis of p-n junctions’. J. Appl. Phys. 85, pp. 7774–7783.CrossRefADSGoogle Scholar
  38. 38.
    De Wolf, P., M. Geva, T. Hantschel, W. Vandervorst, and R.B. Bylsma (1998): ‘Two-dimensional carrier profiling of InP structures using scanning spreading resistance microscopy’. Appl. Phys. Lett. 73, pp. 2155–2157.CrossRefADSGoogle Scholar
  39. 39.
    Semiconductor Industry Association (1997): The National Technology Roadmap for Semiconductors, p. 181.Google Scholar
  40. 40.
    Semiconductor Industry Association (1998): International Technology Roadmap for Semiconductors, p. 297.Google Scholar
  41. 41.
    Knoll, B., F. Keilmann (1999): ‘Near-field probing of vibrational absorbtion for chemical microscopy’. Nature 399, pp. 134–137.CrossRefADSGoogle Scholar
  42. 42.
    Lohmann, G. (1997): Volumetric Image Analysis. (Wiley-Teubner, Stuttgart)Google Scholar
  43. 43.
    Ohser, J., F. Mücklich (2000): Statistical Analysis of Microstructures in Materials Science. (John Wiley & Sons, Chichester)zbMATHGoogle Scholar
  44. 44.
    Mecke, K.R., D. Stoyan (eds.) (2000): Statistical Physics and Spatial Statistics: The Art of Analyzing Spatial Structures and Pattern. (Springer, Heidelberg)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Robert Magerle
    • 1
  1. 1.Physikalische Chemie IIUniversität BayreuthBayreuthGermany

Personalised recommendations