Skip to main content

Characterising the Morphology of Disordered Materials

  • Chapter
  • First Online:
Morphology of Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 600))

Abstract

We introduce Minkowski functionals to characterise, reconstruct and discriminate different complex material microstructures, for instance, experimental data sets generated from X-ray computer tomography imaging; samples include a suite of Fontainebleau sandstone, and a heterogeneous cross-bedded sandstone. Three distinct classes of digitised complex microstructure are considered: particle based Boolean models, structures generated by level-cuts through Gaussian fields, and models based on a Voronoi tesselation of space. One can define a set of measures for random composite media from a single image at any phase fraction ø which allows one to accurately reconstruct the medium for all other phase fractions and to predict, for instance, the percolation threshold p c. The evolution of the Minkowski functions during erosion and dilation operations on non-convex morphologies leads to a very accurate discrimination of morphology — better than commonly used techniques such as structure functions or chord length distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P., Jacquin, C., and Thovert, J.-F. (1992): The formation factor of reconstructed porous media. Water Resources Research, 28, 1571–1576.

    Article  ADS  Google Scholar 

  2. Arns, C. H., Knackstedt, M. A., and Pinczewski, W. V. (2002): v p: v s relationships for model sandstones. Geophys. Res. Lett., 29(8), 10.1029/200/GEO13788.

    Google Scholar 

  3. Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., and Mecke, K. R. (2001b): Euler-poincaré characteristics of classes of disordered media. Phys. Rev. E, 63,031112:1–13.

    Google Scholar 

  4. Bakke, S. and Oren, P. (1997): 3-d pore-scale modelling of sandstones and flow simulations in the pore networks. SPE Journal, 2, 136–149.

    Article  Google Scholar 

  5. Bentz, D. P., Quenard, D. A., Kentzel, H., Baruchen, F., Kunzel, Baruchel, J., Peyrin, F., Martys, N. S., and Garboczi, E. J. (2000): Microstructure and transport properties of porous building materials: Ii three dimensional x-ray tomographic studies. Materials and Structures, 33, 147–153.

    Article  Google Scholar 

  6. Berk, N. F. (1987): Scattering properties of a model bicontinuous structure with a well defined length scale. Phys. Rev. Lett., 58, 2718–2721.

    Article  ADS  Google Scholar 

  7. Berk, N. F. (1991): Scattering properties of the leveled-wave model of random morphologies. Phys. Rev. A, 44, 5069–5079.

    Article  ADS  Google Scholar 

  8. Borgefors, G. (1986): Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34, 344–371.

    Article  Google Scholar 

  9. Bryant, S., Mellor, D., and Cade, C. (1993): Physically representative network models of transport in porous media. AIChE Journal, 39, 387–396.

    Article  Google Scholar 

  10. Cahn, J. W. (1965): Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys., 42, 93–99.

    Article  ADS  Google Scholar 

  11. D. Stoyan, W. S. K. and Mecke, J. (1995): Stochastic Geometry and its Applications. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  12. Dunsmuir, J. H., Ferguson, S. R., and D’Amico, K. L. (1991): Design and operation of an imaging x-ray detector for microtomography. IOP Conference Series, 121, 257–261.

    Google Scholar 

  13. Flannery, B. P., Deckman, H. W., Roberge, W. G., and D’Amico, K. L. (1987): Three-dimensional x-ray microtomography. Science, 237, 1439–1444.

    Article  ADS  Google Scholar 

  14. Fredrich, J. T., Greaves, K. H., and Martin, J. W. (1993): Pore geometry and transport properties of Fontainebleau sandstone. Intl. J. Rock Mech. Min. Sci., 30, 691–697.

    Article  Google Scholar 

  15. Gibson, L. and Ashby, M. (1988): Cellular Solids: Structure and Properties. Pergamon Press, Oxford.

    MATH  Google Scholar 

  16. Hilfer, R. (1958): Transport and Relaxation Phenomena in Porous Media, volume XCII of Advances in Chemical Physics, pages 299–424. John Wiley & Sons, Inc., New York.

    Google Scholar 

  17. Hyde, S. T., Barnes, I. S., and Ninham, B.W. (1990): Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. Langmuir, 6, 1055–1062.

    Article  Google Scholar 

  18. Jacobs, K., Herminghaus, S., and Mecke, K. R. (1998): Thin polymer films rupture via defects. Langmuir, 14, 965–969.

    Article  Google Scholar 

  19. Jernot, J. P. and Jouannot, P. (1993): Euler-poincaré characteristic of a randomly filled threedimensional network. J. Microsc., 171, 233–237.

    Google Scholar 

  20. Joshi, M. (1974): A class of stochastic models for porous materials. Ph.D. thesis, University of Kansas, Lawrence.

    Google Scholar 

  21. Knackstedt, M. A. and Roberts, A. P. (1996): Morphology and macroscopic properties of conducting polymer blends. Macromolecules, 29, 1369–1371.

    Article  ADS  Google Scholar 

  22. Lindquist, W. B., Lee, S.-M., Coker, D. A., and Jones, K. (1996): Medial axis analysis of three dimensional tomographic images of drill core samples. J. Geophys. Res., 101B, 8297–8310.

    Article  ADS  Google Scholar 

  23. Lindquist, W. B. and Venkatarangan, A. (1999): Investigating 3d geometry of porous media from high resolution images. Phys. Chem. Earth (A), 25, 593–599.

    Article  Google Scholar 

  24. Lindquist, W. B., Venkatarangan, A., Dunsmuir, J., and Wong, T. F. (2000): Pore and throat size distributions measured from synchrotron x-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res., 105B, 21508.

    ADS  Google Scholar 

  25. Lohmann, G. (1998): Volumetric Image Analysis. Wiley-Teubner, Chichester, New York.

    MATH  Google Scholar 

  26. Manwart, C., Torquato, S., and Hilfer, R. (2000): Stochastic reconstruction of sandstones. Phys. Rev. E, 62, 893–899.

    Article  ADS  Google Scholar 

  27. Martys, N. S., Torquato, S., and Bentz, D. P. (1994): Universal scaling of fluid permeability for sphere packings. Phys. Rev. E, 50, 403.

    Article  ADS  Google Scholar 

  28. Mecke, J. and Stoyan, D. (2001): The specific connectivity number of random networks. Adv. Appl. Prob., 33, 576–583.

    Article  MATH  MathSciNet  Google Scholar 

  29. Mecke, K. (1997): Morphology of spatial patterns: Porous media, spinodal decomposition and dissipative structures. Acta Physica Polonica B, 28, 1747–1781.

    Google Scholar 

  30. Mecke, K. R. (1994): Integralgeometrie in der Statistischen Physik: Perkolation, komplexe Flüssigkeiten und die Struktur des Universums, pages 61–68. Harry Deutsch, Frankfurt.

    MATH  Google Scholar 

  31. Mecke, K. R. (1996): Morphological characterization of patterns in reaction diffusion systems. Phys. Rev. E, 53, 4794–4800.

    Article  ADS  Google Scholar 

  32. Mecke, K. R. (1998): Integral geometry and statistical physics. International Journal of Modern Physics B, 12, 861–899.

    Article  ADS  MathSciNet  Google Scholar 

  33. Mecke, K. R. and Seyfried, A. (2002): Strong dependence of percolation thresholds on polydispersity. Europhys. Lett., 58, 28–34.

    Article  ADS  Google Scholar 

  34. Mecke, K. R. and Stoyan, D., eds. (2000): Statistical Physics-The Art of Analyzing and Modeling Spatial Structures, volume 554 of Lecture Notes in Physics. Springer, Berlin.

    Google Scholar 

  35. Monnereau, C. and Vignes-Adler, M. (1998): Optical tomography of real three-dimensional foams. Journal of Colloid and Interface Science, 202, 45–53.

    Article  Google Scholar 

  36. Nelder, J. A. and Mead, R. (1965): A simplex method for function minimization. Computer Journal, 7, 308–313.

    MATH  Google Scholar 

  37. Oh, W. and Lindquist, W. B. (1999): Image thresholding by indicator kriging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 590–602.

    Article  Google Scholar 

  38. Ohser, J. and Mücklich, F. (2000): Statistical Analysis of Materials Structures. J. Wiley & Sons, Chichester, New York.

    Google Scholar 

  39. Øren, P. E. and Bakke, S. (2001): Process-based reconstruction of sandstones and prediction of transport properties. Transport in Porous Media, -, submitted.

    Google Scholar 

  40. Øren, P. E., Bakke, S., and Arntzen, O. J. (1998): Extending predictive capabilities to network models. SPE Journal, 3, 324–336.

    Article  Google Scholar 

  41. Po-zenWong, J. K. and Tomanic, J. P. (1984): Conductivity and permeability of rocks. Phys. Rev. B, 30, 6606–6614.

    Article  ADS  Google Scholar 

  42. Quiblier, J. (1984): A new three-dimensional modeling technique for studying porous media. J. Colloid Interface Sci., 98, 84–102.

    Google Scholar 

  43. Roberts, A. P. (1997a): Morphology and thermal conductivity of model organic aerogels. Phys. Rev. E, 55, R1286–R1289.

    Article  ADS  Google Scholar 

  44. Roberts, A. P. (1997b): Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E, 56, 3203–3212.

    Article  ADS  Google Scholar 

  45. Roberts, A. P., Bentz, D. P., and Knackstedt, M. (1996): Correlating microstructure to the petrophysical properties of porous rocks. In Proceedings of the SPE Asia Pacific Oil and Gas Conference, pages 551–559. Soc. Petrol. Eng., Adelaide, Australia.

    Google Scholar 

  46. Roberts, A. P. and Knackstedt, M. (1995): Mechanical and transport properties of model foamed solids. J. Materials Sci. Letters, 14, 1357–1359.

    Article  Google Scholar 

  47. Roberts, N., Reed, M., and Nesbitt, G. (1997): Estimation of the connectivity of a synthetic porous medium. J. Microsc., 187, 110–118.

    Article  Google Scholar 

  48. Rosenfeld, A. (1976): Digital Picture Processing. Academic Press, New York.

    Google Scholar 

  49. Saito, T. and Toriwaki, J.-I. (1994): New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition, 27, 1551–1565.

    Article  Google Scholar 

  50. Santaló, L. A. (1976): Integral Geometry and Geometric Probability. Addison-Wesley, Reading.

    MATH  Google Scholar 

  51. Scheidegger, A. (1974): The Physics of Flow through Porous Media. University of Toronto Press, Toronto.

    Google Scholar 

  52. Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J., and Torquato, S. (1993): Crossproperty relations and permeability estimation in model porous media. Phys. Rev. E, 48, 4584–4591.

    Article  ADS  Google Scholar 

  53. Serra, J., ed. (1992): Image Analysis and Mathematical Morphology, volume 1,: Theoretical Advances. Academic Press, New York.

    Google Scholar 

  54. Spanne, P., Thovert, J., Jacquin, J., Lindquist, W. B., Jones, K., and Coker, D. (1994): Synchotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett., 73, 2001–2004.

    Article  ADS  Google Scholar 

  55. Stauffer, D. and Aharony, A. (1994): Introduction to Percolation Theory. Taylor & Francis, London, 2nd edition.

    Google Scholar 

  56. Teubner, M. (1991): Level surfaces of gaussian random fields and microemulsions. Europhys. Lett., 14, 403–408.

    Article  ADS  Google Scholar 

  57. Teubner, M. and Strey, R. (1987): Origin of the scattering peak in microemulsions. J. Chem. Phys., 87, 3195–3200.

    Article  ADS  Google Scholar 

  58. Thovert, J.-F., Yousefian, F., Spanne, P., Jacquin, C. G., and Adler, P. M. (2001): Grain reconstruction of porous media: Application to a low-porosity Fontainebleau sandstone. Phys. Rev. E, 63, 061307.

    Article  ADS  Google Scholar 

  59. Torquato, S. (2002): Random Heterogeneous Materials: Microstucture and Macroscopic Properties. Springer, New York.

    Google Scholar 

  60. Yeong, C. L. Y. and Torquato, S. (1998): Reconstructing random media. Phys. Rev. E, 57, 495–506.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arns, C.H., Knackstedt, M.A., Mecke, K.R. (2002). Characterising the Morphology of Disordered Materials. In: Mecke, K., Stoyan, D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45782-8_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45782-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44203-5

  • Online ISBN: 978-3-540-45782-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics