Spatial Statistics of a Turbulent Random Multiplicative Branching Process

  • Martin Greiner
Part of the Lecture Notes in Physics book series (LNP, volume 600)


Random multiplicative branching processes serve as empirical models for fully developed turbulence. It is necessary to discuss their spatial statistics in terms of a generating functional, so that a rigorous comparison with data can be performed. Some possible links to a Navier-Stokes dynamics are indicated.


Spatial Statistic Dissipation Scale Energy Cascade Multiplicative Cascade Velocity Structure Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monin, A.S. and Yaglom, A.M. (1971): Statistical Fluid Mechanics,Vols. 1 and 2 (MIT Press, Cambridge).Google Scholar
  2. 2.
    Frisch, U. (1995): Turbulence (Cambridge University Press, Cambridge).zbMATHGoogle Scholar
  3. 3.
    Kolmogorov, A.N. (1962): J. Fluid Mech. 13, 82.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Greiner, M., H. Eggers, P. Lipa (1998): Phys. Rev. Lett. 80, 5333.CrossRefADSGoogle Scholar
  5. 5.
    Greiner, M., J. Schmiegel, F. Eickemeyer, P. Lipa, H. Eggers (1998): Phys. Rev. E 58, 554.CrossRefADSGoogle Scholar
  6. 6.
    Eggers, H.C., T. Dziekan, M. Greiner (2001): Phys. Lett. A 281, 249.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Schmiegel, J., T. Dziekan, B. Jouault, J. Cleve, M. Greiner (2001): preprint.Google Scholar
  8. 8.
    Dziekan, T. (2001): Zwei-Punkt Kumulanten in synthetischer Turbulenz (diploma thesis, TU Dresden).Google Scholar
  9. 9.
    Jouault, B., P. Lipa, M. Greiner (1999): Phys. Rev. E 59, 2451.CrossRefADSGoogle Scholar
  10. 10.
    Jouault, B., M. Greiner, P. Lipa (2000): Physica D 136, 125.zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Cleve, J., M. Greiner (2000): Phys. Lett. A 273, 104.CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Schmiegel, J., H. Eggers, M. Greiner (2001): preprint cond-mat/0106347.Google Scholar
  13. 13.
    Greiner, M., P. Lipa, P. Carruthers (1995): Phys. Rev. E 51, 1948.CrossRefADSGoogle Scholar
  14. 14.
    Greiner, M., J. Giesemann, P. Lipa, P. Carruthers (1996): Z. Phys. C 69, 305.CrossRefGoogle Scholar
  15. 15.
    Giesemann, J., M. Greiner, P. Lipa (1997): Physica A 247, 41.CrossRefADSGoogle Scholar
  16. 16.
    Greiner, M., J. Giesemann (1998), In: Wavelets in Physics, ed. by L.Z. Fang, R.L. Thews (World Scientific, Singapore), pp. 89–131.Google Scholar
  17. 17.
    Benzi, R., L. Biferale, R. Tripiccione, E. Trovatore (1997): Phys. Fluids 9, 2355.CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Martin Greiner
    • 1
    • 2
  1. 1.Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany

Personalised recommendations