Advertisement

Spatial Jump Processes and Perfect Simulation

  • Kasper K. Berthelsen
  • Jesper Møller
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 600)

Abstract

Spatial birth-and-death processes, spatial birth-and-catastrophe processes, and more general types of spatial jump processes are studied in detail. Particularly, various kinds of coupling constructions are considered, leading to some known and some new perfect simulation procedures for the equilibrium distributions of different types of spatial jump processes. These equilibrium distributions include many classical Gibbs point process models and a new class of models for spatial point processes introduced in the text.

Keywords

Point Process Equilibrium Distribution Jump Process Jump Time Stochastic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asmussen, S. (1987): Applied Probability and Queues. (Wiley, Chichester)zbMATHGoogle Scholar
  2. 2.
    Baddeley, A. and van Lieshout, M. N. M. (1995): ‘Area-interaction Point Processes’. Ann. Inst. Statist. Math. 46, pp. 601–619.CrossRefGoogle Scholar
  3. 3.
    Berthelsen, K. K. and Møller, J. (2001): ‘Perfect simulation and inference for spatial point processes’. Technical report, R-01-2009, Department of Mathematical Sciences, Aalborg University. Submitted.Google Scholar
  4. 4.
    Berthelsen, K. K. and Møller, J. (2001): ‘A primer on perfect simulation for spatial point processes’. Technical report, R-01-2026, Department of Mathematical Sciences, Aalborg University. Submitted.Google Scholar
  5. 5.
    Daley, D. J. and Vere-Jones, D. (1988): An Introduction to Point Processes. (Springer, Berlin)zbMATHGoogle Scholar
  6. 6.
    Döge, G. (2000): ‘Grand canonical simulations of hard-disk systems’. In: Statistical Physics and Spatial Statistics, ed. by K. R. Mecke and D. Stoyan, volume 554 of Lecture Notes in Physics (Springer, Berlin), pp. 373–393.CrossRefGoogle Scholar
  7. 7.
    Feller, W. (1971): An Introduction to Probability Theory and Its Applications, volume 2 (John Wiley and Sons Inc., New York), 2nd edition.zbMATHGoogle Scholar
  8. 8.
    Fernández, R., Ferrari, P. A. and Garcia, N. L. (1999): ‘Perfect simulation for interacting point processes, loss networks and Ising models’. Unpublished.Google Scholar
  9. 9.
    Georgii, H.-O. (2000): ‘Phase transitions and percolation in Gibbsian particle models’. In: Statistical Physics and Spatial Statistics, ed. by K. R. Mecke and D. Stoyan, volume 554 of Lecture Notes in Physics (Springer, Berlin), pp. 267–294.CrossRefGoogle Scholar
  10. 10.
    Geyer, C. J. (1999): ‘Likelihood inference for spatial processes’. In: Stochastic Geometry, Likelihood and Computation, ed. by O. E. Barndorff-Nielsen, W. Kendall and M. van Lieshout (Chapman & Hall), pp. 79–140.Google Scholar
  11. 11.
    Häggström, O., van Lieshout, M.-C. N. M. and Møller, J. (1999): ‘Characterization results and Markovchain Monte Carlo algorithms including exact simulation for some spatial point processes’. Bernoulli 5, pp. 641–658.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kallenberg, O. (1984): ‘An informal guide to the theory of conditioning in point processes’. Int. Statist. Rev. 52, pp. 151–164.zbMATHMathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Kelly, F. P. and Ripley, B. D. (1976): ‘A note on Strauss’s model for clustering’. Biometrika 63, pp. 357–360.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kendall, W. S. (1998): ‘Perfect Simulation for the Area-Interaction point process’. In: Probability Towards 2000, ed. by L. Accardi and C. Heyde (Springer, New York), pp. 218–234.Google Scholar
  15. 15.
    Kendall, W. S. and Møller, J. (2000): ‘Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes’. Adv. Appl. Prob. 32, pp. 844–865.zbMATHCrossRefGoogle Scholar
  16. 16.
    Lieshout, M. N. M. van (2000): Markov point processes and their applications. Imperial College Press, London.zbMATHCrossRefGoogle Scholar
  17. 17.
    Löwen, H. (2000): ‘Fun with hard spheres’. In: Statistical Physics and Spatial Statistics, ed. by K. R. Mecke and D. Stoyan, volume 554 of Lecture Notes in Physics (Springer, Berlin), pp. 295–331.CrossRefGoogle Scholar
  18. 18.
    Mase, S., Møller, J., Stoyan, D., Waagepetersen, R. and Döge, G. (2001): ‘Packing densities and simulated tempering for hard core Gibbs point processes’, Ann. Inst. Statis. Math. 53, pp. 661–680.zbMATHCrossRefGoogle Scholar
  19. 19.
    Mecke, K. (2000): ‘Additivity, convexity and beyond: applications of Minkowski functionals in statistical physics’. In: Statistical Physics and Spatial Statistics, ed. by K. R. Mecke and D. Stoyan, volume 554 of Lecture Notes in Physics (Springer, Berlin), pp. 111–184.CrossRefGoogle Scholar
  20. 20.
    Meyn, S. P. and Tweedie, R. L. (1994): Markov Chains and Stochastic Stability. (Springer-Verlag, London)Google Scholar
  21. 21.
    Møller, J. (1989): ‘On the rate of convergence of spatial birth-and-death processes’. Ann. Inst. Statist. Math. 41, pp. 565–581.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Møller, J. (2001): ‘A review of perfect simulation in stochastic geometry’. In: Selected Proceedings of the Symposium on Inference for Stochastic Processes, ed. by I. V. Basawa, C. C. Heyde and R. L. Taylor, volume 37 of IMS Lecture Notes & Monographs Series, pp. 333–355.Google Scholar
  23. 23.
    Møller, J. and Schladitz, K. (1999): ‘Extensions of Fill’s algorithm for perfect simulation’. J. Roy. Statist. Soc. Ser. B 61, pp. 1–15.CrossRefGoogle Scholar
  24. 24.
    Norris, J. R. (1997): Markov Chains. (Cambridge University Press, New York)zbMATHGoogle Scholar
  25. 25.
    Preston, C. (1977): ‘Spatial birth-and-death processes’. Bull. Int. Statist. Inst. 46, pp. 371–391.MathSciNetGoogle Scholar
  26. 26.
    Propp, J. G. and Wilson, D. B. (1996): ‘Exact Sampling with Coupled MarkovChains and Applications to Statistical Mechanics’. Random Structures and Algorithms 9, pp. 223–252.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Reuter, G. E. H. and Ledermann, W. (1953): ‘On the differential equations for the transition probabilities of Markovprocesses with enumerably many states’. Proc. Camb. Phil. Soc. 49, pp. 247–262.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ripley, B. D. (1977): ‘Modelling spatial patterns (with discussion)’. J. Roy. Statist. Soc. Ser. B 39, pp. 172–212.MathSciNetGoogle Scholar
  29. 29.
    Ruelle, D. (1969): Statistical Mechanis: Rigorous Results. (W. A. Benjamin, Reading, Massachusetts)zbMATHGoogle Scholar
  30. 30.
    Strauss, D. J. (1975): ‘A model for clustering’. Biometrika 62, pp. 467–475.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Thönnes, E. (1999): ‘Perfect simulation of some point processes for the impatient user’. Adv. Appl. Prob. 31, pp. 69–87.zbMATHCrossRefGoogle Scholar
  32. 32.
    Thönnes, E. (2000): ‘A primer on perfect simulation’. In: Statistical Physics and Spatial Statistics, ed. by K.R. Mecke and D. Stoyan, volume 554 of Lecture Notes in Physics (Springer, Berlin), pp. 349–378.CrossRefGoogle Scholar
  33. 33.
    Widom, B. and Rowlinson, J. S. (1970): ‘A new model for the study of liquid-vapor phase transitions’. J. Chem. Phys. 52, pp. 1670–1684.CrossRefADSGoogle Scholar
  34. 34.
    Wilson, D. B. (2000): ‘How to Couple from the Past Using a Read-Once Source of Randomness’. Random Structures and Algorithms 16, pp. 85–113.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Kasper K. Berthelsen
    • 1
  • Jesper Møller
    • 1
  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark

Personalised recommendations