A Survey on Contact Distributions

  • Daniel Hug
  • Günter Last
  • Wolfgang Weil
Part of the Lecture Notes in Physics book series (LNP, volume 600)


This survey describes contact distributions of random structures from a geometric point of view. Various extensions of the classical contact distribution functions are considered. As a rule, we explain all concepts first in a simple situation, under the assumption of stationarity, and for Poisson point processes. In a second step we proceed to more complicated models. Particular emphasis is given to random patterns involving clustering.


Poisson Process Point Process Convex Body Boolean Model Marked Point Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baddeley, A.J. (1999): ‘Spatial sampling and censoring’. In: Stochastic Geometry: Likelihood and Computation, ed. by O. Barndorff-Nielsen, W. Kendall, M.N.M. van Lieshout (Chapman & Hall/CRC, Boca Raton), pp. 37–78.Google Scholar
  2. 2.
    Baddeley, A.J., Gill, R.D. (1997): ‘Kaplan-Meier estimators of distance distributions for spatial point processes’. Ann. Statist. 25, pp. 263–292.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chiu, S.N., Stoyan, D. (1998): ‘Estimators of distance distributions for spatial patterns’. Stat. Neerl. 52, pp. 239–246.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Daley, D.J., Vere-Jones, D. (1988): An Introduction to the Theory of Point Processes. (Springer, New York)zbMATHGoogle Scholar
  5. 5.
    Hahn, U., Micheletti, A., Pohlink, R., Stoyan, D., Wendrock, H. (1999): ‘Stereological analysis and modelling of gradient structures’. Journal of Microscopy 195, pp. 113–124.CrossRefGoogle Scholar
  6. 6.
    Hansen, M.B., Baddeley, A.J., Gill, R.D. (1996): ‘Kaplan-Meier type estimators for linear contact distributions’. Scand. J. Statist. 23, pp. 129–155.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hansen, M.B., Baddeley, A.J., Gill, R.D. (1999): ‘First contact distributions for spatial patterns: regularity and estimation’. Adv. in Appl. Probab. 31, pp. 15–33.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heinrich, L. (1992): ‘On existence and mixing properties of germ-grain models’. Statistics 23, pp. 271–286.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heinrich, L. (1993): ‘Asymptotic properties of minimum contrast estimators for parameters of Boolean models’. Metrika 40, pp. 67–94.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Heinrich, L. (1998): ‘Contact and chord length distribution of a stationary Voronoi tessellation’. Adv. in Appl. Probab. 30, pp. 603–618.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hilfer, R. (2000): ‘Local porosity theory and stochastic reconstruction for porous media’. In: Statistical Physics and Spatial Statistics, Lecture Notes in Physics 554, ed. by K. Mecke, D. Stoyan (Springer, Berlin), pp. 203–241.CrossRefGoogle Scholar
  12. 12.
    Hug, D. (1999): Measures, curvatures and currents in convex geometry, Habilitationsschrift. (Albert-Ludwigs-Universität, Freiburg)Google Scholar
  13. 13.
    Hug, D. (2000): ‘Contact distributions of Boolean models’. Rend. Circ. Mat. Palermo (2) Suppl. 65, pp. 137–181.MathSciNetGoogle Scholar
  14. 14.
    Hug, D., Last, G. (2000): ‘On support measures in Minkowski spaces and contact distributions in stochastic geometry’. Ann. Probab. 28, pp. 796–850.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hug, D., Last, G., Weil, W. (2002): ‘Generalized contact distributions of inhomogeneous Boolean models’. Adv. in Appl. Probab. 34, pp. 21–47.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kerscher, M. (2000): ‘Statistical analysis of large-scale structure in the universe’. In: Statistical Physics and Spatial Statistics, Lecture Notes in Physics, ed. by K. Mecke, D. Stoyan (Springer, Berlin), pp. 36–71.CrossRefGoogle Scholar
  17. 17.
    Kiderlen, M. (2001): ‘Non-parametric estimation of the directional distribution of stationary line and fibre processes’. Adv. in Appl. Probab. 33, pp. 6–24.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kiderlen, M., Weil, W. (1999): ‘Measure-valued valuations and mixed curvature measures of convex bodies’. Geom. Dedicata 76, pp. 291–329.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kingman, J. F. (1995): Poisson Processes (Oxford, Clarendon)Google Scholar
  20. 20.
    Last, G., Holtmann, M. (1999): ‘On the empty space function of some germ-grain models’. Pattern Recognition 32, pp. 1587–1600.CrossRefGoogle Scholar
  21. 21.
    Last, G., Schassberger, R. (1998): ‘On the distribution of the spherical contact vector of stationary germ-grain models’. Adv. in Appl. Probab. 30, pp. 36–52.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Last, G., Schassberger, R. (2000): ‘On stationary stochastic flows and Palm probabilities of surface processes’. Ann. Appl. Probab. 10, pp. 463–492.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Last, G., Schassberger, R. (2001): ‘On the second derivative of the spherical contact distribution function of smooth grain models’. Probab. Theory and Related Fields 121, pp. 49–72.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Matheron, G. (1975): Random Sets and Integral Geometry. (Wiley, New York)zbMATHGoogle Scholar
  25. 25.
    Mecke, K. (1994): Integralgeometrie in der Statistischen Physik. (Verlag Harri Deutsch, Frankfurt am Main)zbMATHGoogle Scholar
  26. 26.
    Mecke, K. (2000): ‘Additivity, convexity and beyond: applications of Minkowski functionals in statistical physics’. In: Statistical Physics and Spatial Statistics, Lecture Notes in Physics 554, ed. by K. Mecke, D. Stoyan (Springer, Berlin), pp. 112–184CrossRefGoogle Scholar
  27. 27.
    Mecke, K., Wagner, H. (1991): ‘Euler characteristics and related measures for random geometric sets’. J. Stat. Phys. 64, pp. 843–850.zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Molchanov, I. (1995): ‘Statistics of the Boolean model: from the estimation of means to the estimation of distributions’. Adv. in Appl. Probab. 27, pp. 63–86.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Molchanov, I. (1997): Statistics of the Boolean model for Practitioners and Mathematicians. (Wiley, Chichester)zbMATHGoogle Scholar
  30. 30.
    Molchanov, I., Stoyan, D. (1994): ‘Asymptotic properties of estimators for parameters of the Boolean model’. Adv. in Appl. Probab. 26, pp. 301–323.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Muche, L., Stoyan, D. (1992): ‘Contact and chord length distribution of the Poisson Voronoi tessellation’. J. Appl. Probab. 29, pp. 467–471.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ohser, J., Mücklich, F. (2000): Statistical Analysis of Microstructures in Materials Science. (Wiley, Chichester)zbMATHGoogle Scholar
  33. 33.
    Quintanilla, J., Torquato, S. (1997): ‘Microstructure functionals for a model of statistically inhomogeneous random media’. Physical Review E 55, pp. 1558–1565.CrossRefADSGoogle Scholar
  34. 34.
    Rataj, J., (1993): ‘Random distances and edge correction’. Statistics 24, pp. 377–385.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Rataj, J., Saxl, I. (1995): ‘Boolean cluster models: mean cluster dilations and spherical distances’. Mathematica Bohemica 122, pp. 21–36.MathSciNetGoogle Scholar
  36. 36.
    Saxl, I. (1993): ‘Contact distances and random free paths’. Journal of Microscopy 170, pp. 53–64.Google Scholar
  37. 37.
    Schneider, R. (1993): Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44. (Cambridge University Press, Cambridge)zbMATHCrossRefGoogle Scholar
  38. 38.
    Schneider, R. (1994): ‘An extension of the principal kinematic formula of integral geometry’. Rend. Circ. Mat. Palermo, II. Ser., 35, pp. 275–290.Google Scholar
  39. 39.
    Schneider, R., Weil, W. (2000): Stochastische Geometrie. (Teubner, Stuttgart)zbMATHGoogle Scholar
  40. 40.
    Serra, J. (1982): Image Analysis and Mathematical Morphology. (Academic Press, London)zbMATHGoogle Scholar
  41. 41.
    Soille, P. (1999): Morphological Image Analysis: Principles and Applications. (Springer, Berlin)zbMATHGoogle Scholar
  42. 42.
    Stoyan, D., Kendall, W.S., Mecke, J. (1995): Stochastic Geometry and its Applications, Second Edition. (Wiley, Chichester)zbMATHGoogle Scholar
  43. 43.
    Stoyan, D., Penttinen, A. (2000): ‘Recent applications of point process methods in forestry statistics’. Statistical Science 15, pp. 61–78.CrossRefMathSciNetGoogle Scholar
  44. 44.
    Stoyan, D., Stoyan, H. (1994): Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. (Wiley, Chichester)zbMATHGoogle Scholar
  45. 45.
    Stoyan, D., Stoyan, H., Tscheschel, A., Mattfeld, T. (2001): ‘On the estimation of distance distribution functions for point processes and random sets’. Image Anal. Stereol. 20, pp. 65–69.zbMATHMathSciNetGoogle Scholar
  46. 46.
    Tscheschel, A., Stoyan, D., Hilfer, R. (2000): ‘Erosion-dilation analysis for experimental and synthetic microstructures of sedimentary rock’. Physica A 284, pp. 46–58.CrossRefADSGoogle Scholar
  47. 47.
    Van Lieshout, M.N.M., Baddeley, A.J. (1995): ‘A non-parametric measure of spatial interaction in point-patterns’. Statist. Neerland. 49, pp. 344–361.Google Scholar
  48. 48.
    Van Lieshout, M.N.M., Baddeley, A.J. (1999): ‘Indices of dependence between types in multivariate point patterns’. Scand J. Statist. 26, pp. 511–532.zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Weil, W. (1997): ‘Mean bodies associated with random closed sets’ Rend. Circ. Mat. Palermo (2) Suppl. 50, pp. 387–412.MathSciNetGoogle Scholar
  50. 50.
    Weil, W. (2000): ‘Mixed measures and inhomogeneous Boolean models’. In: Statistical Physics and Spatial Statistics, Lecture Notes in Physics 554, ed. by K. Mecke, D. Stoyan (Springer, Berlin), pp. 95–110CrossRefGoogle Scholar
  51. 51.
    Weil, W. (2001): ‘Densities of mixed volumes for Boolean models’ Adv. in Appl. Probab. 33, pp. 39–60.zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Weil, W., Wieacker, J.A. (1988): ‘A representation theorem for random sets’. Probab. Math. Statist. 9, pp. 147–151.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Daniel Hug
    • 1
  • Günter Last
    • 2
  • Wolfgang Weil
    • 3
  1. 1.Mathematisches InstitutUniversität FreiburgFreiburgGermany
  2. 2.Institut für Mathematische StochastikUniversität Karlsruhe (TH)Karlsruhe
  3. 3.Mathematisches Institut IIUniversität Karlsruhe (TH)Karlsruhe

Personalised recommendations