Advertisement

Shape Statistics for Random Domains and Particles

  • Dietrich Stoyan
  • Ashot Davtyan
  • Daulet Turetayev
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 600)

Abstract

This paper surveys ideas of statistical analysis of planar images of particles such as powder particles or sand grains, domains such as monolayer domains on water or water droplets on planar surfaces and biological cells or vesicles. For a simple and fast discrimination between collectives of particles, shape ratios or indices such as ‘area:perimeter’ ratio are powerful tools. A more detailed description is possible by means of various functions such as radius-vector function, tangent-angle function and erosion function. A deeper understanding of particle shape and size is possible by studying the relevant physical processes which generate them, such as fracture, abrasion and growth by aggregation.

The second part of the paper discusses a particular stochastic model, called Gibbs pixelparticle. It produces two-dimensional connected lattice figures, often called lattice animals, the distribution of which depends on an energy function which is controled by particle area and boundary length and roughness. These pixel-particles vary in a broad spectrum of possible shapes and sizes.

Keywords

Diagonal Direction Total Projection Shape Ratio Erosion Function Minkowski Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anastassiou, D., D. J. Sakrison (1981): ‘A probability model for simple closed random curves’, IEEE Transact. Inform. Theor. 27, pp. 376–381CrossRefMathSciNetGoogle Scholar
  2. 2.
    Beddow, J.K. (1980): Particle Science and Technology (Chemical Publishers, New York)Google Scholar
  3. 3.
    Beddow, J.K. (1984): Particle Characterization in Technology (CRC Press, Boca Raton)Google Scholar
  4. 4.
    Bookstein, F.L. (1991): Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  5. 5.
    Cardy, J. (1994): ‘Mean area of self-avoiding loops’, Phys. Rev. Lett. 72, pp. 1580–1583zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Chow, B. (1985): ‘Deforming convex hypersurfaces by the nth root of the Gaussian curvature’, Differential Geometry 22, pp. 117–138zbMATHMathSciNetGoogle Scholar
  7. 7.
    Cox, D.R., V. Isham (1980): Point Processes (Chapman & Hall, London-New York)zbMATHGoogle Scholar
  8. 8.
    Dryden, I.L., K.V. Mardia (1998): Statistical Shape Analysis (Wiley, Chichester)zbMATHGoogle Scholar
  9. 9.
    Firey, W.J. (1974): ‘Shapes of worn stones’, Mathematika 21, pp.1–11zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fisher, M.E., A.J. Guttmann, S.G. Whittington (1991): ‘Two-dimensional lattice vesicles and polygons’, J. Phys. A: Math. Gen. 24, pp. 3095–3105CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Geyer, C. (1999): ‘Likelihood inference for spatial point processes’. In: Stochastic Geometry. Likelihood and Computation, ed by O.E. Barndorff-Nielsen, W.S. Kendall, M.N.M. van Lieshout (Chapman & Hall/CRC, Boca Raton/London), pp.79–140Google Scholar
  12. 12.
    Gilks, W.R., S. Richardson, D.G. Spiegelhalter (1996): Introducing Markov Chain Monte Carlo (Chapman& Hall, London)Google Scholar
  13. 13.
    Gille, W. (2000): ‘Chord length distributions and small-angle scattering’, Europ. Phys. J. B 17, pp. 371–383CrossRefADSGoogle Scholar
  14. 14.
    Golomb, S. (1994): Polyominoes (Princeton Univ. Press, Princeton)zbMATHGoogle Scholar
  15. 15.
    Gompper, G., D.M. Kroll (1997a): ‘Network models of fluid, hexatic and polymerized membranes’, J. Phys.: Condens. Matter 9, pp. 8795–8834CrossRefADSGoogle Scholar
  16. 16.
    Gompper, G., D.M. Kroll (1997b): ‘Fluctuations of polymerized, fluid and hexatic membranes: continuum models and simulations’, Current Opinion in Colloid & Interface Science 2, pp. 373–381CrossRefGoogle Scholar
  17. 17.
    Gompper, G., D.M. Kroll (1998): ‘Membranes with fluctuating topology: Monte Carlo simulations’, Phys. Rev. Lett. 81, pp. 2284–2287CrossRefADSGoogle Scholar
  18. 18.
    Grenander, U., M.I. Miller (1994): ‘Representations of knowledge in complex systems (with discussion)’, J. R. Statist. Soc. B 56, pp. 549–603zbMATHMathSciNetGoogle Scholar
  19. 19.
    Hawkins, A.E. (1993): The Shape of Powder-Particle Outlines (Wiley, New York)Google Scholar
  20. 20.
    Hobolth, A., J. Pedersen, E.B. Vedel-Jensen (2000): ‘A continuous parametric shape model.’ Research Report 13, Laboratory of Computational Stochastics, Department of Mathematical Sciences, University of Aarhus.Google Scholar
  21. 21.
    Huisken, G. (1984): Flow by mean curvature of convex surfaces into spheres. J. Differential Geometry 20, pp. 237-266Google Scholar
  22. 22.
    Jaric, M., U. Seifert, W. Wintz, M. Wortis (1995): ‘Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes’, Phys. Rev. E. 52, pp. 6623–6634CrossRefADSGoogle Scholar
  23. 23.
    Jensen, I., A. J. Guttmann (2000): ‘Statistics of lattice animals (polyominoes) and polygons’, J. Phys. A: Math. Gen. 33, pp. L257–L263zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Kendall, D.G., D. Barden, T.K. Carne, H. Le (1999): Shape and Shape Theory (Wiley, Chichester)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kent, J.T., I.L. Dryden, C.R. Anderson (2000): ‘Using circulant symmetry to model featureless objects’, Biometrika 87, pp. 527–544zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Klarner, D.A. (1997): ‘Polyominoes’. In: Handbook of Discrete and Computational Geometry, ed by J.E. Goodman, J.O. Rourke (CRC Press, Boca Raton), pp.225–240Google Scholar
  27. 27.
    Körner, R., D. Stoyan (1999): ‘Modeling abrasion processes by operations of mathematical morphology’, Particle & Particle Systems Characterization 14, pp.66–70CrossRefGoogle Scholar
  28. 28.
    Krüger, P., M. Lösche (2000): ‘Molecular chirality and the domain shapes in lipid monolayers on aqueous surfaces’, Phys. Rev. E. 62, pp. 7031–7043CrossRefADSGoogle Scholar
  29. 29.
    Lantuejoul, C., F. Maisonneuve (1984): ‘Geodesic methods in quantative image analysis’ Pattern Recognition 17, pp. 177–187zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Leibler, S., R.R.P. Singh, M.E. Fisher (1987): ‘Thermodynamic behavior of two-diemnsional vesicles’, Phys. Rev. Lett. 59, pp. 1989–1992CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Lele, S.R., J.T. Richtsmeier (2000): An Invariant Approach to Statistical Analysis of Shapes (Chapman & Hall/CRC, Boca Raton/London)Google Scholar
  32. 32.
    Lipowsky, R., E. Sackmann (eds.) (1995): Structure and Dynamics of Membranes (Elsevier Science Publ., Amsterdam)Google Scholar
  33. 33.
    Lösche, M., P. Krüger (2002): ‘Quantitative evaluation of Langmuir monolayer phase morphologies using a Minkowski function analysis’, this volume Google Scholar
  34. 34.
    Mecke, K.R. (1995): ‘Bending rigidity of fluctuating membranes’ Z. Phys. B 97, pp. 379–387CrossRefADSGoogle Scholar
  35. 35.
    Mecke, K. (2000): ‘Additivity, convexity and beyond: Applications of Minkowski functionals in statistical physics’, in: [36], pp. 111–184Google Scholar
  36. 36.
    Mecke, K., D. Stoyan (2000): Statistical Physics and Spatial Statistics Lecture Notes in Physics 554 (Springer-Verlag)Google Scholar
  37. 37.
    Ohser, J., F. Mücklich (2000): Statistical Analysis of Microstructures in Materials Science (Wiley, Chichester)zbMATHGoogle Scholar
  38. 38.
    Quaisser, E. (1994): Diskrete Geometrie (Spektrum Akademislar Verlag, Heidelberg)zbMATHGoogle Scholar
  39. 39.
    Redelmeier, D.H. (1981): ‘Counting polyominoes: yet another attack’ Discrete Math. 36, pp. 191–203zbMATHMathSciNetGoogle Scholar
  40. 40.
    Santaló, L.A. (1976): Geometry and Geometric Probability (Addison-Wesley Publishing Company)Google Scholar
  41. 41.
    Schwarz, U.S., G. Gompper (2002): ‘Bicontinuous surfaces in self-assembling amphiphilic systems’, this volume Google Scholar
  42. 42.
    Seifert, U. (2000): ‘Giant vesicles: A theoretical perspective’. In: Giant Vesicles, ed. by P.L. Liusi, P. Walde (J. Wiley New York), pp. 71–91Google Scholar
  43. 43.
    Silverman, B.W., J.O. Ramsey (1997): Functional Data Analysis (Springer-Verlag, New York)zbMATHGoogle Scholar
  44. 44.
    Small, C. (1996): The Statistical Theory of Shape (Springer-Verlag, New York)zbMATHGoogle Scholar
  45. 45.
    Soille, P. (1999): Morphological Image Analysis (Springer-Verlag, Heidelberg)zbMATHGoogle Scholar
  46. 46.
    Stauffer D., A. Aharony (1994): Introduction to Percolation Theory. Revised 2nd edition (Taylor & Francis, London)Google Scholar
  47. 47.
    Stoyan, D., I. Molchanov (1997): ‘Set-valued means of random particles’ J. Math. Imaging and Vision 7, pp. 111–121CrossRefMathSciNetGoogle Scholar
  48. 48.
    Stoyan, D., H. Stoyan (1994): Fractals, Random Shapes and Point Fields (Wiley, Chichester)zbMATHGoogle Scholar
  49. 49.
    Stoyan, D. (2000): ‘Basic ideas of spatial statistics’. In: [36], pp. 3–21Google Scholar
  50. 50.
    Stoyan, D., W.S. Kendall, J. Mecke (1995): Stochastic Geometry and its Applications (Wiley, Chichester)zbMATHGoogle Scholar
  51. 51.
    Toussaint, G.T. (ed.) (1988): Computational Morphology. A Computational Geometric Approach to the Analysis of Form (North Holland, Amsterdam)zbMATHGoogle Scholar
  52. 52.
    Tso, K. (1985): ‘Deforming a hypersurface by its Gauss-Kronecker curvature’, Comm. Pure Appl. Math. 38, pp. 867–882 21, pp. 1–11zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Underwood, E. (1987): ‘The analysis of nonplanar surfaces using stereological and other methods’ Acta Stereol 6/III, pp. 855–876Google Scholar
  54. 54.
    Vanderzande, C. (1993): ‘Vesicles, the tricritical-0-state Potts model, and the collapse of branched polymers’, Phys. Rev. Lett. 70, pp. 3595–3598CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dietrich Stoyan
    • 1
  • Ashot Davtyan
    • 1
  • Daulet Turetayev
    • 1
  1. 1.Institut für StochastikTU Bergakademie FreibergFreiberg

Personalised recommendations