Advertisement

The Euler Number of Discretized Sets — On the Choice of Adjacency in Homogeneous Lattices

  • Joachim Ohser
  • Werner Nagel
  • Katja Schladitz
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 600)

Abstract

Two approaches for determining the Euler-Poincaré characteristic of a set observed on lattice points are considered in the context of image analysis — the integral geometric and the polyhedral approach. Information about the set is assumed to be available on lattice points only. In order to retain properties of the Euler number and to provide a good approximation of the true Euler number of the original set in the Euclidean space, the appropriate choice of adjacency in the lattice for the set and its background is crucial. Adjacencies are defined using tessellations of the whole space into polyhedrons. In ℝ3, two new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies. For the Euler number of a set and its complement, a consistency relation holds. Each of the pairs of adjacencies (14.1, 14.1), (14.2, 14.2), (6, 26), and (26, 6) is shown to be a pair of complementary adjacencies with respect to this relation. That is, the approximations of the Euler numbers are consistent if the set and its background (complement) are equipped with this pair of adjacencies. Furthermore, sufficient conditions for the correctness of the approximations of the Euler number are given. The analysis of selected microstructures and a simulation study illustrate how the estimated Euler number depends on the chosen adjacency. It also shows that there is not a uniquely best pair of adjacencies with respect to the estimation of the Euler number of a set in Euclidean space.

Keywords

Lattice Point Convex Body Lattice Cell Euler Number Consistency Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arns, C. H., A. Knackstedt, W. V. Pinczewski, K. Mecke (2001): ‘Euler-Poincaré characteristics of classes of disordered media’. Phys. Rev. E 63, pp. ???Google Scholar
  2. 2.
    Bieri, H., W. Nef (1984): ‘Alogorithms for the Euler Characteristic and Related Additive Functionals of Digital Objects’. Comput. Vision Graphics Image Process. 28, pp. 166–175CrossRefGoogle Scholar
  3. 3.
    Gruber, P. M. (1993): ‘Geometry of numbers’. In: Handbook of convex geometry, edited by P. M. Gruber, J. M. Wills (North Holland, Amsterdam), pp. 739–763Google Scholar
  4. 4.
    Hadwiger, H. (1957): Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Heidelberg)zbMATHGoogle Scholar
  5. 5.
    Heinrich, L. (2002) ‘Asymptodic normality of the Euler-Poincaré characteristic of Boolean models in large sampling windows.’ Report No. 449, Universität Augsburg, Institut für Mathematik.Google Scholar
  6. 6.
    Herman, G. T. (1992): ‘Discrete Multidimensional Jordan Surfaces’. Graph. Mod. Image Proc. 54, pp. 507–515CrossRefGoogle Scholar
  7. 7.
    Hilfer, R. (2000): ‘Local porosity theory and stochastic reconstruction’. In: Statistical Physics and Spatial Statistics, edited by K. R. Mecke, D. Stoyan (Springer, Heidelberg), pp. 203–241CrossRefGoogle Scholar
  8. 8.
    Imiya, A., U. Eckhardt (1997): ‘The Euler Characteristic of Discrete Object’. Discrete Geometry for Computer Imagery, pp. 163–174Google Scholar
  9. 9.
    Jernot, J. P., P. Jouannot-Chesney, C. Lantuéjoul (2001): ‘Determination of the connectivity number of a set using a tessellation’. Manuscript.Google Scholar
  10. 10.
    Khalimsky, E., R. Kopperman, P. Meyer (1990): ‘Computer Graphics and connected topologies on finite ordered sets’. In: Topology and its Application, vol. 36 (Elsevier Science Publisher B.V), pp. 1–17zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kong, T. Y., A. W. Roscoe (1985): ‘Continuous analogs of axiomatized digital surfaces’. Comput. Vision Graphics Image Process. 29, pp. 60–86CrossRefGoogle Scholar
  12. 12.
    Kong, T. Y., A. Rosenfeld (1989): ‘Digital Topology: Introduction and Survey’. Comput. Vision Graphics Image Process. 48, pp. 357–393CrossRefGoogle Scholar
  13. 13.
    Kong, T.Y., J. K. Udupa (1992): ‘A justification of a fast surface tracking algorithm’. CVGIP: Graph. Models Image Process. 54, pp. 162–170CrossRefGoogle Scholar
  14. 14.
    Lang, C., J. Ohser, R. Hilfer (2001): ‘On the analysis of spatial binary images’. J. Microsc. 202, pp. 1–12CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lee, C., T. Poston, A. Rosenfeld (1991): ‘Winding and Euler Numbers for 2D and 3D Digital Images’. CVGIP: Graph. Models Image Process. 53(6), pp. 522–537zbMATHCrossRefGoogle Scholar
  16. 16.
    Lee, C., T. Poston, A. Rosenfeld (1993): ‘Holes and Genus of 2D and 3D Digital Images’. CVGIP: Graph. Models Image Process. 55(1), pp. 20–47CrossRefGoogle Scholar
  17. 17.
    Lohmann, G. (1998): Volumetric Image Analysis (Wiley-Teubner, Chichester, New York)zbMATHGoogle Scholar
  18. 18.
    Matheron, G. (1975): Random Sets and Integral Geometry (Wiley, New York)zbMATHGoogle Scholar
  19. 19.
    Mecke, K. R. (1993): Integralgeometrie in der Statistischen Physik (Harri Deutsch, Frankfurt a. M.)Google Scholar
  20. 20.
    Mecke, K. R. (2000): ‘Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics’. In: Statistical Physics and Spatial Statistics, edited by K. R. Mecke, D. Stoyan (Springer, Heidelberg), pp. 111–184CrossRefGoogle Scholar
  21. 21.
    Mecke, J., R. G. Schneider, D. Stoyan, W. R. R. Weil (1990): Stochastische Geometrie (Birkhäuser, Basel, Boston, Berlin)zbMATHGoogle Scholar
  22. 22.
    Miles, R. (1976): ‘Estimating aggregate and overall characterictics from thick sections by transmission microscopy’. J. Microscopy 107, pp. 227–233Google Scholar
  23. 23.
    Nagel, W., J. Ohser, K. Pischang (2000): ‘An integral-geometric approach for the Euler-Poincaré characteristic of spatial images’. J. Microsc. 189, pp. 54–62CrossRefGoogle Scholar
  24. 24.
    Ohser, J., F. Mücklich (2000): Statistical Analysis of Materials Structures (J Wiley & Sons, Chichester, New York)Google Scholar
  25. 25.
    Ohser, J., W. Nagel (1996): ‘The estimation of the Euler-Poincaré characteristic from observations on parallel sections’. J. Microsc. 184, pp. 117–126CrossRefGoogle Scholar
  26. 26.
    Rosenfeld, A., A. Kak (1979): Digital Picture Processing (Academic Press, New York)Google Scholar
  27. 27.
    Rosenfeld, A., T.Y. Kong, A.Y. Wu (1991): ‘Digital surfaces’. CVGIP: Graph. Models Image Process. 53, pp. 305–312zbMATHCrossRefGoogle Scholar
  28. 28.
    Schneider, R. (1993): Convex Bodies: The Brunn-Minkowski Theory, vol. 44 of Encyclopedia of Mathematics and Its Application (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  29. 29.
    Schneider, R., W. Weil (2000): Stochastische Geometrie (Teubner, Stuttgart)zbMATHGoogle Scholar
  30. 30.
    Serra, J. (1969): Introduction á la Morphologie Mathématique, (Cahiers du Centre de Morphologie Mathématique, Booklet No. 3, E.N.S.M.P., Paris)Google Scholar
  31. 31.
    Serra, J. (1982): Image Analysis and Mathematical Morphology, vol. 1 (Academic Press, London)zbMATHGoogle Scholar
  32. 32.
    Voss, K. (1993): Discrete Images, Objects, and Functions in Z n (Springer-Verlag, New York)Google Scholar
  33. 33.
    Webster, R. J. (1994): Convexity (Oxford University Press, New York)zbMATHGoogle Scholar
  34. 34.
    Weil, W. (2000): ‘Mixed measures and homogeneous Boolean models’. In: Statistical Physics and Spatial Statistics, edited by K. R. Mecke, D. Stoyan (Springer, Heidelberg), pp. 95–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joachim Ohser
    • 1
  • Werner Nagel
    • 2
  • Katja Schladitz
    • 1
  1. 1.Fraunhofer Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany
  2. 2.Fakultät für Mathematik und InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations