Skip to main content

Modeling Paraconsistent Reasoning by Classical Logic

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2284))

Abstract

We introduce a general method for paraconsistent reasoning in knowledge systems by classical second-order formulae. A standard technique for paraconsistent reasoning on inconsistent classical theories is by shifting to multiple-valued logics. We show how these multiple-valued theories can be “shifted back” to two-valued classical theories (through a polynomial transformation), and how preferential reasoning based on multiple-valued logic can be represented by classical circumscription-like axioms. By applying this process we manage to overcome the shortcoming of classical logic in properly handling inconsistent data, and provide new ways of implementing multiple-valued paraconsistent reasoning in knowledge systems. Standard multiple-valued reasoning can thus be performed through theorem provers for classical logic, and multiple-valued preferential reasoning can be implemented using algorithms for processing circumscriptive theories (such as DLS and SCAN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Arieli, A. Avron. The logical role of the four-valued bilattice. Proc. LICS’98, pp.218–226, IEEE Press, 1998.

    Google Scholar 

  2. O. Arieli, A. Avron. The value of the four values. Artificial Intelligence 102(1), pp.97–141, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Arieli, A. Avron. Bilattices and paraconsistency. Frontiers of Paraconsistent Logic (D. Batens, C. Mortensen, G. Priest, J. Van Bendegem, editors), pp.11–27, Studies in Logic and Computation 8, Research Studies Press, 2000.

    Google Scholar 

  4. O. Arieli, M. Denecker. Circumscriptive approaches to paraconsistent reasoning. Technical Report CW-304, Department of Computer Science, University of Leuven, 2001.

    Google Scholar 

  5. N.D. Belnap. A useful four-valued logic. Modern Uses of Multiple-Valued Logic (G. Epstein, J.M. Dunn, editors), pp.7–37, Reidel Publishing Company, 1977.

    Google Scholar 

  6. N.D. Belnap. How computer should think. Contemporary Aspects of Philosophy (G. Ryle, editor), pp.30–56, Oriel Press, 1977.

    Google Scholar 

  7. N.C.A. da-Costa. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, pp.497–510, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Doherty, W. Lukaszewicz, A. Szalas. Computing circumscription revisited: Preliminary report. Proc. IJCAI’95, pp.1502–1508, 1995.

    Google Scholar 

  9. P. Doherty, W. Lukaszewicz, A. Szalas. Computing circumscription revisited: A reduction algorithm. Journal of Automated Reasoning 18, pp.297–334, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence 29, pp.209–230, 1989.

    Article  MathSciNet  Google Scholar 

  11. M. ifer, E.L. Lozinskii. RI: A logic for reasoning with inconsistency. Proc. LICS’89, pp.253–262, IEEE Press, 1989.

    Google Scholar 

  12. M. Kifer, E.L. Lozinskii. A logic for reasoning with inconsistency. Journal of Automated Reasoning 9(2), pp.179–215, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Kraus, D. Lehmann, M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2) pp.167–207, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Lehmann, M. Magidor. What does a conditional knowledge base entail? Artificial Intelligence 55, pp.1–60, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Makinson. General theory of cumulative inference. Non-Monotonic Reasoning (M. Reinfrank, editor), LNAI 346, pp.1–18, Springer, 1989.

    Google Scholar 

  16. D. Makinson. General patterns in nonmonotonic reasoning. Handbook of Logic in Artificial Intelligence and Logic Programming 3 (D. Gabbay, C. Hogger, J. Robinson, editors) pp.35–110, Oxford Science Pub., 1994.

    Google Scholar 

  17. J. McCarthy. Circumscription-A form of non monotonic reasoning. Artificial Intelligence 13(1–2), pp.27–39, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. McCarthy. Applications of circumscription to formalizing common-Sense knowledge. Artifical Intelligence 28, pp.89–116, 1986.

    Article  MathSciNet  Google Scholar 

  19. H.J. Ohlbach, SCAN-Elimination of predicate quantifiers. Proc. CADE’96, (M.A. McRobbie, J. Slaney, editors), LNAI 1104, pp.161–165, Springer, 1996.

    Google Scholar 

  20. G. Priest. Reasoning about truth. Artificial Intelligence 39, pp.231–244, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Priest. Minimally Inconsistent LP. Studia Logica 50, pp.321–331, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Przymusinski. An algorithm to compute circumscription. Artificial Intelligence 38, pp.49–73, 1991.

    Article  MathSciNet  Google Scholar 

  23. Y. Shoham. Reasoning about change. MIT Press, 1988.

    Google Scholar 

  24. A. Tarski. Introduction to logic. Oxford University Press, N.Y., 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arieli, O., Denecker, M. (2002). Modeling Paraconsistent Reasoning by Classical Logic. In: Eiter, T., Schewe, KD. (eds) Foundations of Information and Knowledge Systems. FoIKS 2002. Lecture Notes in Computer Science, vol 2284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45758-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45758-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43220-3

  • Online ISBN: 978-3-540-45758-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics