Advertisement

Incremental Fuzzy Decision Trees

  • Marina Guetova
  • Steffen Hölldobler
  • Hans-Peter Störr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2479)

Abstract

We present a new classification algorithm that combines three properties: It generates decision trees, which proved a valuable and intelligible tool for classification and generalization of data; it utilizes fuzzy logic, that provides for a fine grained description of classified items adequate for human reasoning; and it is incremental, allowing rapid alternation of classification and learning of new data. The algorithm generalizes known non-incremental algorithms for top down induction of fuzzy decision trees, as well as known incremental algorithms for induction of decision trees in classical logic. The algorithm is shown to be terminating and to yield results equivalent to the non-incremental version.

Keywords

incremental learning classification decision trees fuzzy logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.Google Scholar
  2. [2]
    Sven-Erik Bornscheuer, Yvonne McIntyre, Steffen Hölldobler, and Hans-Peter Störr. User adaptation in a Web shop system. In M. H. Hamza, editor, Proceedings of the IASTED International Conference Internet and Multimedia Systems and Applications, pages 208–213, Anaheim, Calgary, Zurich, 2001. ACTA Press.Google Scholar
  3. [3]
    L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth & Brooks Advanced Books and Software, Pacific Grove, CA, 1984.zbMATHGoogle Scholar
  4. [4]
    D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.zbMATHGoogle Scholar
  5. [5]
    Marina Guetova. Inkrementelle Fuzzy-Entscheidungsbäume. Diplomarbeit, Knowledge Representation and Reasoning Group, Department of Computer Science, Technische Universität Dresden, Dresden, Germany, January 2001, (in German).Google Scholar
  6. [6]
    Tanja Hölldobler. Temporäre Benutzermodellierung für multimediale Produktpräsentationen im World Wide Web. Peter Lang Europäischer Verlag der Wissenschaften, Frankfurt, 2001, (in German).Google Scholar
  7. [7]
    Cezary Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems, Man, and Cybernetics, 28(1):1–14, 1998.Google Scholar
  8. [8]
    S. K. Murthy. Automatic construction of decision trees from data: a multi-disciplinary survey. Data Mining and Knowledge Discovery, 2:345–389, 1998.CrossRefMathSciNetGoogle Scholar
  9. [9]
    J. R. Quinlan. Induction on decision trees. Machine Learning, 1:81–106, 1986.Google Scholar
  10. [10]
    J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  11. [11]
    Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree induction based on efficient tree restructuring. Machine Learning, 29:5–44, 1997.zbMATHCrossRefGoogle Scholar
  12. [12]
    L. A. Zadeh. Fuzzy sets. Information and Control, 8:407–428, 1965.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Jens Zeidler. Unscharfe Entscheidungsbäume. PhD thesis, Technische Universität Chemnitz, Fakultät Informatik, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marina Guetova
    • 1
  • Steffen Hölldobler
    • 1
  • Hans-Peter Störr
    • 1
  1. 1.Artificial Intelligence Institute Department of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations