Advertisement

Axiom — A Modular Visual Object Retrieval System

  • Jochen Wickel
  • Pablo Alvarado
  • Peter Dörfler
  • Thomas Krüger
  • Karl-Friedrich Kraiss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2479)

Abstract

Computer vision has always been an active research domain within artificial intelligence. Recognizing visual objects can alleviate the interaction of users with information retrieval systems. In this paper, we present a modular object recognition system which combines advanced image processing methods with AI techniques in a flexible way. This flexibility permits adaptations to a large variety of tasks. We describe the system architecture, point out some of the key algorithms and present experimental results which demonstrate the system’s performance in several recognition tasks.

Keywords

Object Recognition Recognition Rate Training Image Radial Basis Function Neural Network Color Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, A., Jain, R.: Visual Information Retrieval. Communications of the ACM 40 (1997) 71–79Google Scholar
  2. 2.
    Flickner, M., Sawhney, H., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The QBIC system. IEEE Computer 28 (1995) 23–32Google Scholar
  3. 3.
    Pope, A.R.: Model-based object recognition-a survey of recent research. Technical report 94-04, University of British Columbia (1994)Google Scholar
  4. 4.
    Mel, B.W.: SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition. Neural Computation 9 (1997) 777–804CrossRefGoogle Scholar
  5. 5.
    Schiele, B., Pentland, A.: Probabilistic object recognition and localization. In: Proc. Int. Conf. on Computer Vision-ICCV’99. (1999) 177–182Google Scholar
  6. 6.
    Paquet, E., Rioux, M.: Nefertiti: a query by content system for three-dimensional model and image databases management. Image and Vision Computing 17 (1999) 157–166CrossRefGoogle Scholar
  7. 7.
    Elsen, I.: Ansichtenbasierte 3D-Objekterkennung mit erweiterten Selbstorganisie-renden Merkmalskarten. VDI-Verlag (2000)Google Scholar
  8. 8.
    Elsen, I., Kraiss, K.F., Krumbiegel, D., Walter, P., Wickel, J.: Visual Information Retrieval for 3D Product Identification. K nstliche Intelligenz 1/99 (1999) 64–67Google Scholar
  9. 9.
    Walter, P.: Verfahren der sequentiellen Merkmalsanalyse für die Mustererkennung. Shaker Verlag (2000)Google Scholar
  10. 10.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)Google Scholar
  11. 11.
    Alvarado, P., Berner, A., Akyol, S.: Combination of high-level cues in unsupervised single image segmentation using bayesian belief networks. In: Proc. of the Int. Conf. on Imaging Science, Systems and Technology, Las Vegas, Nevada (2002)Google Scholar
  12. 12.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 1254–1259 Saliency maps based on multiresolution analysis.CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, Corfu, Greece (1999) 1150–1157Google Scholar
  14. 14.
    Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour image normalization. In: ECCV. (1998)Google Scholar
  15. 15.
    Swain, M., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7 (1991) 11–32CrossRefGoogle Scholar
  16. 16.
    Smith, J.R.: Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression. PhD thesis, Columbia University (1997)Google Scholar
  17. 17.
    Jain, A., Healey, G.: A multiscale representation including opponent color features for texture recognition. IEEE Transaction on Image Processing 7 (1998) 124–128CrossRefGoogle Scholar
  18. 18.
    Alvarado, P., Dörfler, P., Wickel, J.: Axon2-a visual object recognition system for non-rigid objects. In: Proc. of the IASTED Int. Conf. Signal Processing, Pattern Recognition and Applications, Rhodes, Greece (2001) 235–240Google Scholar
  19. 19.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Aanalysis. John Wiley & Sons (1973)Google Scholar
  20. 20.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18 (1975) 509–517zbMATHCrossRefGoogle Scholar
  21. 21.
    Vogt, M.: Combination of Radial Basis Function Neural Networks with Optimized Learning Vector Quantization. In: ICNN-93, IEEE Int. Conf. on Neural Networks. Volume 3. (1993) 1841–1846Google Scholar
  22. 22.
    Kohonen, T.: Self-Organizing Maps. Springer-Verlag (1995)Google Scholar
  23. 23.
    Wickel, J.: The Forcs language. Internal report, Lehrstuhl für Technische Informatik, RWTH Aachen (2002)Google Scholar
  24. 24.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, Columbia University (1996)Google Scholar
  25. 25.
    Carter, R.: Mapping the Mind. University of California Press (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jochen Wickel
    • 1
  • Pablo Alvarado
    • 1
  • Peter Dörfler
    • 1
  • Thomas Krüger
    • 1
  • Karl-Friedrich Kraiss
    • 1
  1. 1.Lehrstuhl für Technische InformatikRWTH AachenGermany

Personalised recommendations