Fast Winner-Takes-All Networks for the Maximum Clique Problem

  • Brijnesh J. Jain
  • Fritz Wysotzki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2479)


We present an in-depth mathematical analysis of a winner-takes-all Network tailored to the maximum clique problem, a well-known intractable combinatorial optimization problem which has practical applications in several real world domains. The analysis yields tight bounds for the parameter settings to ensure energy descent to feasible solutions. To verify the theoretical results we employ a fast annealing schedule to the WTA algorithm and show the effectiveness of the proposed approach for large scaled problems in extensive computer simulations.


Random Graph Maximum Clique Average Computation Time Clique Number Test Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal of Computing, 15(4):1054–1068, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial Optimization, volume 4, pages 1–74. Kluwer Academic Publishers, Boston, MA, 1999.Google Scholar
  3. 3.
    U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique is almost np-complete. In Proc. 32nd Ann. IEEE Symp. Found. Comput. Sci., pages 2–12, 1991.Google Scholar
  4. 4.
    N. Funabiki and S. Nishikawa. Comparisons of energy-descent optimization algorithms for maximum clique. IEICE Trans. Fundamentals, E79-A(4):452–460, 1996.Google Scholar
  5. 5.
    M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.zbMATHGoogle Scholar
  6. 6.
    L. Gerhards and W. Lindenberg. Clique detection for nondirected graphs: two new algorithms. Computing, 21:295–322, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Homer and M. Peinado. On the performance of polynomial-time clique approximation algorithms. In D.S. Johnson and M. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1996.Google Scholar
  8. 8.
    J.J. Hopfield and D.W. Tank. Neural computation of decisions in optimization problems. Biological Cybernetics, 52:141–152, 1985.zbMATHMathSciNetGoogle Scholar
  9. 9.
    R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(11):1168–1180, 1989.CrossRefGoogle Scholar
  10. 10.
    A. Jagota. Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Networks, 6:724–735, 1995.CrossRefGoogle Scholar
  11. 11.
    B.J. Jain and F. Wysotzki. Distance-based classification of structures within a connectionist framework. In R. Klinkenberg et al., editor, Proceedings Fachgrup pentreffen Maschinelles Lernen, 2001.Google Scholar
  12. 12.
    J.E. Lecky, O.J. Murphy, and R.G. Absher. Graph theoretic algorithms for the pla folding problem. IEEE Transactions on Computer Aided Design, 8(9):1014–1021, 1989.CrossRefGoogle Scholar
  13. 13.
    H. Ogawa. Labeled point pattern matching by delauney triangulation and maximal cliques. Pattern Recognition, 19(1):35–40, 1986.CrossRefGoogle Scholar
  14. 14.
    M. Pelillo, K. Siddiqi, and S.W. Zucker. Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1105–1120, 1999.CrossRefGoogle Scholar
  15. 15.
    K. Schädler and F. Wysotzki. Application of a neural net in classification and knowledge discovery. In M. Verleysen, editor, Proc. ESANN’98, pages 117–122. D-Facto, Brussels, 1998.Google Scholar
  16. 16.
    K. Schädler and F. Wysotzki. Comparing structures using a Hopfield-style neural network. Applied Intelligence, 11:15–30, 1999.CrossRefGoogle Scholar
  17. 17.
    K.A. Smith. Neural networks for combinatorial optimisation: A review of more than a decade of research. INFORMS Journal on Computing, 11(1):15–34, 1999.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Brijnesh J. Jain
    • 1
  • Fritz Wysotzki
    • 1
  1. 1.Dept. of Computer ScienceTechnical University BerlinGermany

Personalised recommendations