Advertisement

LIGHT — A Constraint Language and Compiler System for Typed-Unification Grammars

  • L. Ciortuz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2479)

Abstract

This work presents LIGHT, a feature constraint language for deduction-based bottom-up parsing with typed-unification grammars. We overview both its formal definition, as a logic language operating bottom-up inferences over OSF-terms, and its implementation — an elegant combination of a virtual machine for head-corner parsing and an extended abstract machine for feature structure unification.

Keywords

Virtual Machine Logic Program Light System Lexical Entry Abstract Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abramson and V. Dahl. Logic Grammars. Symbolic Computation AI Series. Springer-Verlag, 1989.Google Scholar
  2. 2.
    H. Aït-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT Press, Cambridge, MA, 1991.Google Scholar
  3. 3.
    H. Aït-Kaci and R. Di Cosmo. Compiling order-sorted feature term unification. Technical report, Digital Paris Research Laboratory, 1993. PRL Technical Note 7, downloadable from http://www.isg.sfu.ca/life/.
  4. 4.
    H. At-Kaci and A. Podelski. Towards a meaning of LIFE. Journal of Logic Programming, 16:195–234, 1993.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Aït-Kaci, A. Podelski, and S.C. Goldstein. Order-sorted feature theory unification. Journal of Logic, Language and Information, 30:99–124, 1997.zbMATHGoogle Scholar
  6. 6.
    U. Callmeier. PET-a platform for experimentation with efficient HPSG processing techniques. Journal of Natural Language Engineering, 6(1) (Special Issue on Efficient Processing with HPSG):99–108, 2000.CrossRefGoogle Scholar
  7. 7.
    B. Carpenter. The Logic of Typed Feature Structures-with applications to unification grammars, logic programs and constraint resolution. Cambridge University Press, 1992.Google Scholar
  8. 8.
    B. Carpenter and G. Penn. ALE: The Attribute Logic Engine. User’s Guide. Technical report, Carnegie-Mellon University. Philosophy Department. Laboratory for Computational Linguistics, Pittsburgh, 1992.Google Scholar
  9. 9.
    L. Ciortuz. LIGHT-another abstract machine for FS unification. In D. Flickinger, S. Oepen, J. Tsujii, and H. Uszkoreit, editors, Collaborative Language Engineering. CSLI Publications, The Center for studies of Language, Logic and Information, Stanford University, 2002.Google Scholar
  10. 10.
    L. Ciortuz. Towards ILP-based learning of attribute path values in typed-unification grammars. 2002. (Submitted).Google Scholar
  11. 11.
    L. Ciortuz. A virtual machine design for head-corner parsing with feature structure sharing. 2002. (Submitted).Google Scholar
  12. 12.
    L. Ciortuz. Learning attribute values in typed-unification grammars: On generalised rule reduction. In Proceedings of the 6th Conference on Natural Language Learning (CoNLL-2002), Taipei, Taiwan, 31 August–1 September 2002. Morgan Kaufmann Publishers and ACL.Google Scholar
  13. 13.
    L. Ciortuz. Expanding feature-based constraint grammars: Experience on a largescale HPSG grammar for English. In Proceedings of the IJCAI 2001 co-located Workshop on Modelling and solving problems with constraints, Seattle, USA, August 4–6, 2001. Downloadable from http://www.lirmm.fr/~bessiere/proc_wsijcai01.html.
  14. 14.
    L. Ciortuz. On compilation of head-corner bottom-up chart-based parsing with unification grammars. In Proceedings of the IWPT 2001 International Workshop on Parsing Technologies, pages 209–212, Beijing, China, October 17–19, 2001.Google Scholar
  15. 15.
    L. Ciortuz. On compilation of the Quick-Check filter for feature structure unification. In Proceedings of the IWPT 2001 International Workshop on Parsing Technologies, pages 90–100, Beijing, China, October 17–19, 2001.Google Scholar
  16. 16.
    A. Copestake. The (new) LKB system. CSLI, Stanford University, 1999.Google Scholar
  17. 17.
    A. Copestake, D. Flickinger, and I. Sag. A Grammar of English in HPSG: Design and Implementations. Stanford: CSLI Publications, 1999.Google Scholar
  18. 18.
    J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. Journal of Logic Programming, 19(20):503–582, May–July 1994.Google Scholar
  19. 19.
    R. M. Kaplan and J. Bresnan. Lexical-functional grammar: A formal system for grammatical representation. In J. Bresnan, editor, The Mental Representation of Grammatical Relations, pages 173–381. The MIT Press, 1982.Google Scholar
  20. 20.
    M. Kay. Head driven parsing. In Proceedings of the 1st Workshop on Parsing Technologies, pages 52–62, Pittsburg, 1989.Google Scholar
  21. 21.
    B. Kiefer and H-U. Krieger. A context-free approximation of Head-driven Phrase Structure Grammar. In Proceedings of the 6th International Workshop on Parsing Technologies, pages 135–146, Trento, Italy, 2000.Google Scholar
  22. 22.
    H.-U. Krieger and U. Schäfer. TDL-A Type Description Language for HPSG. Research Report RR-94-37, German Research Center for Artificial Intelligence (DFKI), 1994.Google Scholar
  23. 23.
    R. Malouf, J. Carroll, and A. Copestake. Efficient feature structure operations without compilation. Journal of Natural Language Engineering, 6(1) (Special Issue on Efficient Processing with HPSG):29–46, 2000.CrossRefGoogle Scholar
  24. 24.
    Y. Mitsuishi, K. Torisawa, and J. Tsujii. HPSG-Style Underspecified Japanese Grammar with Wide Coverage. In Proceedings of the 17th International Conference on Computational Linguistics: COLING-98, pages 867–880, 1998.Google Scholar
  25. 25.
    Y. Miyao, T. Makino, K. Torisawa, and J. Tsujii. The LiLFeS abstract machine and its evaluation with the LinGO grammar. Journal of Natural Language Engineering, 6(1) (Special Issue on Efficient Processing with HPSG):47–61, 2000.CrossRefGoogle Scholar
  26. 26.
    Stefan Müller. Deutsche Syntax deklarativ. Head-Driven Phrase Structure Grammar für das Deutsche. Number 394 in Linguistische Arbeiten. Max Niemeyer Verlag, Tübingen, 1999.Google Scholar
  27. 27.
    S. Oepen and J. Caroll. Performance profiling for parser engineering. Journal of Natural Language Engineering, 6(1) (Special Issue on Efficient Processing with HPSG: Methods, Systems, Evaluation):81–97, 2000.CrossRefGoogle Scholar
  28. 28.
    S. Oepen and J. Carroll. Ambiguity packing in HPSG-practical results. In Proceedings of the 1st Conference of the North American Chapter of the ACL, pages 162–169, Seattle, WA, 2000.Google Scholar
  29. 29.
    S. Oepen, D. Flickinger, H. Uszkoreit, and J. Tsujii, editors. Special Issue on Efficient Processing with HPSG: Methods, Systems, Evaluation. Cambridge University Press, 2000. Journal of Natural Language Engineering, 6(1).Google Scholar
  30. 30.
    S. Oepen, D. Flickinger, H. Uszkoreit, and J. Tsujii, editors. Collaborative Language Engineering. CSLI Publications, University of Stanford, CA, 2002.Google Scholar
  31. 31.
    C. Pollard and I. Sag. Head-driven Phrase Structure Grammar. Center for the Study of Language and Information, Stanford, 1994.Google Scholar
  32. 32.
    S. M. Shieber, H. Uszkoreit, F. C. Pereira, J. Robinson, and M. Tyson. The formalism and implementation of PATR-II. In J. Bresnan, editor, Research on Interactive Acquisition and Use of Knowledge. SRI International, Menlo Park, Calif., 1983.Google Scholar
  33. 33.
    S.M. Shieber, Y. Schabes, and F. Pereira. Principles and implementation of deductive parsing. Jornal of Logic Programming, pages 3–36, 1995.Google Scholar
  34. 34.
    M. Siegel. HPSG analysis of Japanese. In Verbmobil: Foundations of Speech-to-Speech Translation. Springer Verlag, 2000.Google Scholar
  35. 35.
    N. Sikkel. Parsing Schemata. Springer Verlag, 1997.Google Scholar
  36. 36.
    G. Smolka. Feature-constraint logics for unification grammars. Journal of Logic Programming, 12:51–87, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    G. Smolka and R. Treinen, editors. The DFKI Oz documentation series. German Research Center for Artificail Intelligence (DFKI), Stuhlsatzenhausweg 3, Sarrbrücken, Germany, 1996.Google Scholar
  38. 38.
    H. Tomabechi. Quasi-destructive graph unification with structure-sharing. In Proceedings of COLING-92, pages 440–446, Nantes, France, 1992.Google Scholar
  39. 39.
    H. Uszkoreit. Categorial Unification Grammar. In International Conference on Computational Linguistics (COLING’92), pages 498–504, Nancy, France, 1986.Google Scholar
  40. 40.
    S. Wintner. An Abstract Machine for Unification Grammars. PhD thesis, Technion-Israel Institute of Technology, 32000 Haifa, Israel, 1997.Google Scholar
  41. 41.
    S. Wintner and N. Francez. Efficient implementation of unification-based grammars. Journal of Language and Computation, 1(1):53–92, 1999.MathSciNetGoogle Scholar
  42. 42.
    D. A. Wroblewski. Non-destructive graph unification. In Dalle Miller, editor, Proceedings of the 6th national conference on artificial intelligence (AAI’87), pages 582–587, Seattle, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. Ciortuz
    • 1
  1. 1.CS DepartmentUniversity of YorkUK

Personalised recommendations