Skip to main content

Approximation Algorithms for k-Line Center

  • Conference paper
  • First Online:
Algorithms — ESA 2002 (ESA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Included in the following conference series:

Abstract

Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ > 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ɛ. We first show that there exists a small “certificate” QP, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1+ɛ) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.

Research by the first author is supported by NSF under grants CCR-00-86013 ITR- 333-1050, EIA-98-70724, EIA-01-31905, and CCR-97-32787, and by a grant from the U.S.-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric optimization problems. Discrete Comput. Geom., 16 (1996), 317–337.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv., 30 (1998), 412–458.

    Article  Google Scholar 

  3. P.K. Agarwal and C. M. Procopiuc. Approximation algorithms for projective clustering. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, 2000, pp. 538–547.

    Google Scholar 

  4. P.K. Agarwal, C. M. Procopiuc, and K.R. Varadarajan. A (1+ɛ)-approximation algorithm for 2-line-center. Submitted for publication.

    Google Scholar 

  5. C.C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected clustering. In Proc. of ACM SIGMOD Intl. Conf. Management of Data, 1999, pp. 61–72.

    Google Scholar 

  6. C.C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional spaces. In Proc. of ACM SIGMOD Intl. Conf. Management of Data, 2000, pp. 70–81.

    Google Scholar 

  7. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, 1999, pp. 82–91.

    Google Scholar 

  8. H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite VCdimension. Discrete Comput. Geom., 14 (1995), 263–279.

    Article  Google Scholar 

  9. T.M. Chan. Approximating the diameter, width, smallest enclosing cylinder and minimum-width annulus. In Proc. 16th Annu. ACM Sympos. Comput. Geom., 2000, pp. 300–309.

    Google Scholar 

  10. K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces. In Proc. 26th Intl. Conf. Very Large Data Bases, 2000, pp. 89–100.

    Google Scholar 

  11. V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4 (1979), 233–235.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. L. Clarkson. Las Vegas algorithms for linear and integer programming. J. ACM, 42:488–499, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. A. Duncan, M.T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms for computational metrology, In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, 1997, pp. 121–130.

    Google Scholar 

  14. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. Density-connected sets and their application for trend detection in spatial databases. In Proc. 3rd Intl. Conf. Knowledge Discovery and Data Mining, 1997.

    Google Scholar 

  15. C. Faloutsos and K.-I. Lin, FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia databases. In Proc. ACM Intl SIGMOD Conf. Management of Data, 1995, pp. 163–173.

    Google Scholar 

  16. P. M. Gruber. Aspects of approximation of convex bodies. Handbook of Convex Geometry, volume A, (P. M. Gruber and J.M. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 319–345.

    Google Scholar 

  17. S. Har-Peled and K. Varadarajan. Approximate Shape Fitting via Linearization. In Proc. IEEE Symp. Foundations of Comp. Sci., 2001, pp. 66–73.

    Google Scholar 

  18. S. Har-Peled and K. Varadarajan. Projective clustering in high dimensions using core-sets. To appear in ACM Symp. Comput. Geom., 2002.

    Google Scholar 

  19. R. Hassin and N. Megiddo. Approximation algorithms for hitting objects by straight lines. Discrete Appl. Math., 30(1991), 29–42.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom., 2 (1987), 127–151.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Hinneburg and D.A. Keim. Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. In Proc. 25th Intl. Conf. Very Large Data Bases, 1999, pp. 506–517.

    Google Scholar 

  22. M.E. Houle and G.T. Toussaint. Computing the width of a set. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-10 (1988), 761–765.

    Article  Google Scholar 

  23. P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving hashing in multidimensional spaces. In Proc. 29th Annu. ACM Sympos. Theory Comput., 1997, pp. 618–625.

    Google Scholar 

  24. A. K. Jain, M.N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 31 (1999), 264–323.

    Article  Google Scholar 

  25. J.W. Jaromczyk and M. Kowaluk. The two-line center problem from a polar view: A new algorithm and data structure. Proc. 4th Workshop Algorithms Data Structures, Lecture Notes Comput. Sci., Vol. 955, Springer-Verlag, 1995, pp. 13–25.

    Google Scholar 

  26. C. M. Procopiuc and M. Jones and P.K. Agarwal and T. M. Murali. A Monte Carlo algorithm for fast projective clustering. In Proc. ACM SIGMOD Intl. Conf. Management of Data, 2002, pp. 418–427.

    Google Scholar 

  27. N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Oper. Res. Lett., 1 (1982), 194–197.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R. (2002). Approximation Algorithms for k-Line Center. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics