Skip to main content

Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Abstract

We show that the medial axis ofa surface S ⊂ ℝ3 can be approximated as a subcomplex oft he Voronoi diagram of a point sample of S. The subcomplex converges to the true medial axis as the sampling density approaches infinity. Moreover, the subcomplex can be computed in a scale and density independent manner. Experimental results as detailed in a companion paper corroborate our theoretical claims.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom. 22 (1999), 481–504.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Amenta, S. Choi, T.K. Dey and N. Leekha. A simple algorithm for homeomorphic surface reconstruction. Internat. J. Comput. Geom. Applications, 12 (2002), 125–121.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Amenta, S. Choi and R.K. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory and Applications 19 (2001), 127–153.

    MATH  MathSciNet  Google Scholar 

  4. D. Attali and J.-O. Lachaud. Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput. Geom.: Theory Appl., 2001, to appear.

    Google Scholar 

  5. D. Attali and A. Montanvert. Computing and simplifying 2D and 3D continuous skeletons. Computer Vision and Image Understanding 67 (1997), 261–273.

    Article  Google Scholar 

  6. J.D. Boissonnat and F. Cazals. Natural neighbor coordinates of points on a surface. Comput. Geom. Theory Appl. 19 (2001), 87–120.

    MathSciNet  Google Scholar 

  7. J.W. Brandt and V.R. Algazi. Continuous skeleton computation by Voronoi diagram. Comput. Vision, Graphics, Image Process. 55 (1992), 329–338.

    MATH  Google Scholar 

  8. T. Culver, J. Keyser and D. Manocha. Accurate computation of the medial axis of a polyhedron. 5th ACM Sympos. Solid Modeling Applications, (1999), 179–190.

    Google Scholar 

  9. T.K. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex. 7th ACM Sympos. Solid Modeling Applications, (2002), 356–366.

    Google Scholar 

  10. M. Etzion and A. Rappoport. Computing Voronoi skeletons of a 3D polyhedron by space subdivision. Tech. Report, Hebrew University, 1999.

    Google Scholar 

  11. P. J. Giblin and B.B. Kimia. A formal classification of 3D medial axis points and their local geometry. Proc. Computer Vision and Pattern Recognition (CVPR), 2000.

    Google Scholar 

  12. L. Guibas, R. Holleman and L. E. Kavraki. A probabilistic roadmap planner for flexible objects with a workspace medial axis based sampling approach. Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, 1999.

    Google Scholar 

  13. C. Hoffman. How to construct the skeleton of CSG objects. The Mathematics of Surfaces, IVA,Bowyer and J. Davenport Eds., Oxford Univ. Press, 1990.

    Google Scholar 

  14. R. L. Ogniewicz. Skeleton-space: A multiscale shape description combining region and boundary information. Proc. Computer Vision and Pattern Recognition, (1994), 746–751.

    Google Scholar 

  15. D. Sheehy, C. Armstrong and D. Robinson. Shape description by medial axis construction. IEEE Trans. Visualization and Computer Graphics 2 (1996), 62–72.

    Article  Google Scholar 

  16. E. C. Sherbrooke, N. M. Patrikalakis and E. Brisson. An algorithm for the medial axis transform of 3D polyhedral solids. IEEE Trans. Vis. Comput. Graphics 2 (1996), 44–61.

    Article  Google Scholar 

  17. G. M. Turkiyyah, D.W. Storti, M. Ganter, H. Chen and M. Vimawala. An accelerated triangulation method for computing the skeletons of free-form solid models. Computer Aided Design 29 (1997), 5–19.

    Article  Google Scholar 

  18. M. Teichman and S. Teller. Assisted articulation of closed polygonal models. Proc. 9th Eurographics Workshop on Animation and Simulation, 1998.

    Google Scholar 

  19. F.-E. Wolter. Cut locus & medial axis in global shape interrogation & representation. MIT Design Laboratory Memorandum 92-2, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dey, T.K., Zhao, W. (2002). Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics