Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 1))

Abstract

One of the most important areas in the robotics industry is the development of robots capable of working in hazardous environments. As humans cannot safely or cheaply work in these environments, providing a high level of robotic functionality is important. Our work in this area focuses on a fault detection method known as analytical redundancy, or AR. In this paper we discuss the application to a hydraulic servovalve system of our novel rigorous nonlinear AR technique. AR is a model-based state-space technique that is theoretically guaranteed to derive the maximum number of independent tests of the consistency of sensor data with the system model and past control inputs. Conventional linear AR is only valid for linear sampled data systems. However, our new nonlinear AR (NLAR) technique maintains traditional linear AR’s mathematical guarantee to generate the maximum possible number of independent tests in the nonlinear domain. Thus NLAR allows us to gain the benefits of AR testing for nonlinear systems with both continuous and sampled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bares L. C., Conley L.S., Thompson B.R. (1997) Rosie: A Mobile Worksystem for D & D: Overview of System Capabilities and CP-5 Reactor Application. Proc. of ANS 7th Topical Meeting on Robotics and Remote Systems, Augusta, GA, 471–477

    Google Scholar 

  2. Bu F., Yao B. (2001) Nonlinear Model Based Coordinated Adaptive Robust Control of Electro-hydraulic Robotic Arms via Overparametrizing Method. IEEE International Conference on Robotics and Automation, Seoul, Korea

    Google Scholar 

  3. Caccavale F., Walker I.D. (1997) Observer-Based Fault Detection for Robot Manipulators. IEEE Int. Conf. on Robotics and Automation. Albuquerque, NM, 2881–2887

    Google Scholar 

  4. Chow E.Y., Willsky A.S. (1984) Analytical Redundancy and the Design of Robust Failure Detection Systems. IEEE Trans. on Automatic Control 29:603–614

    Article  MATH  MathSciNet  Google Scholar 

  5. Conley L., Hamel W.R., Thompson B.R. (1995) Rosie: A Mobile Worksystem for Decontamination and Dismantlement Operations. Proc. of the ANS 6th Topical Meeting on Robotics and Remote Systems, Monterey, CA, 231–238

    Google Scholar 

  6. Daachi B., Benallegue A., M’Sirdi N. K. (2001) A Stable Neural Adaptive Force Controller for a Hydraulic Actuator. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea

    Google Scholar 

  7. De Parsis C., Isidori A. (2001) A Geometric Approach to Nonlinear Fault Detection and Isolation. IEEE Trans. on Automatic Control 46:853–865

    MATH  Google Scholar 

  8. Department of Energy, Washington, D.C. (1993) Environmental Restoration and Waste Management 5-Year Plan, Fiscal Years 1994-1998. DOE/S-00097P, Vol. 1-2

    Google Scholar 

  9. Department of Energy, Federal Energy Technology Center, Morgantown, WV (1997) Environmental Waste Management Project Fact Sheet. http://www.fetc.doe.gov/publications/factsheets/ewm/index.html

  10. Dhillon B.S. (1991) Robot Reliability and Safety, Springer-Verlag, New York, NY

    Google Scholar 

  11. Ding X., Frank P.M. (1991) Frequency Domain Approach and Threshold Selector for Robust Model-Based Fault Detection and Isolation. Proc. of IFAC Fault Detection, Supervision and Safety for Technical Processes, Baden-Baden, Germany, 271–276

    Google Scholar 

  12. Ding X., Guo L., Jeinsch T. (1999) A Characterization of Parity Space and Its Application to Robust Fault Detection. IEEE Transactions on Automatic Control 44:337–343

    Article  MATH  MathSciNet  Google Scholar 

  13. Hammouri H., Kinnaert M., El Yaagoubi E.H. (1999) Observer-Based Approach to Fault Detection and Isolation for Nonlinear Systems. IEEE Transactions on Automatic Control 44:1879–1884

    Article  MATH  Google Scholar 

  14. Honegger M., Corke P. (2001) Model-Based Control of Hydraulically Actuated Manipulators. IEEE International Conference on Robotics and Automation, Seoul, Korea

    Google Scholar 

  15. Isidori A. (1995) Nonlinear Control Systems. Springer-Verlag, London,UK

    MATH  Google Scholar 

  16. Leuschen M.L. (2001) Derivation and Application of Nonlinear Analytical Redundancy Techniques with Applications to Robotics. PhD thesis, Department of Electrical and Computer Engineering, Rice University, Houston, TX

    Google Scholar 

  17. Leuschen M.L., Walker I.D., Cavallaro J.R. (1998) Robot Reliability Through Fuzzy Markov Models. Proc. IEEE Annual Reliability and Maintainability Symposium, Anaheim, CA, 209–214

    Google Scholar 

  18. Leuschen M.L., Walker I.D., Cavallaro J.R. (1999) Investigation of Reliability for Hydraulic Robots Using Analytical Redundancy. Proc. IEEE Annual Reliability and Maintainability Symposium, Washington, DC, 122–128

    Google Scholar 

  19. Leuschen M.L., Walker I.D., Cavallaro J.R. (1999) Monitoring and Diagnostics for a Hydraulic Robot in Hazardous Environments. Proc. of ANS 8th Topical Meeting on Robotics & Remote Systems, Pittsburgh, PA

    Google Scholar 

  20. Leuschen M.L., Walker I.D., Cavallaro J.R. (2001) Experimental AR Fault Detection Methods for a Hydraulic Robot. Proc. of ANS 9th Topical Meeting on Robotics and Remote Systems, Seattle, WA, F–131

    Google Scholar 

  21. Leuschen M.L., Walker I.D., Cavallaro J.R. (2002) Robotic Fault Detection Using Nonlinear Analytical Redundancy. IEEE International Conference on Robotics and Automation, Washington, DC

    Google Scholar 

  22. Leuschen M.L., Walker I.D., Cavallaro J.R. (2002) Nonlinear Analytical Redundancy for Fault Detection. Submitted to: IEEE Trans. on Automatic Control

    Google Scholar 

  23. Leuschen M.L., Walker I.D., Cavallaro J.D., Gamache R.W., Martin M. (2000) Experimental AR Fault Detection Methods for a Hydraulic Robot. Proc. of 18th International Systems Safety Conference, Fort Worth, TX, 402–409

    Google Scholar 

  24. Magni J.F., Mouyon P. (1994) On Residual Generation by Observer and Parity Space Approaches. IEEE Trans. on Automatic Control 39:441–447

    Article  MATH  MathSciNet  Google Scholar 

  25. Nyberg M., Nielsen L. (2000) A Universal Chow-Willsky Scheme and Detectability Criteria. IEEE Trans. on Automatic Control 45:152–156

    Article  Google Scholar 

  26. RedZone Robotics Inc. The Rosie Mobile Worksystem. http://www.redzone.com/downloads/Rosie.pdf.

  27. Stadler W. (1995) Analytical Robotics and Mechatronics. Mc-Graw-Hill, Inc., New York, NY

    Google Scholar 

  28. Staroswiecki M., Cassar J.P, Comtet-Varga G. (1997) Analytic Redundancy Relations for State Affine Systems. Proc. of 1997 Fourth European Control Conference, Brussels, Belgium

    Google Scholar 

  29. Staroswiecki M., Comtet-Varga G. (2001) Analytical Redundancy Relations for Fault Detection and Isolation in Algebraic Dynamic Systems. Automatica 37:687–699

    MATH  MathSciNet  Google Scholar 

  30. Visinsky M.L., Cavallaro J.R., Walker I.D. (1995) A Dynamic Fault Tolerance Framework for Remote Robots. IEEE Transactions on Robotics and Automation 11:477–490

    Article  Google Scholar 

  31. White F.M. (1994) Fluid Mechanics. McGraw-Hill, Inc., USA

    Google Scholar 

  32. Wünnenberg J., Frank P.M. (1990) Dynamic Model Based Incipient Fault Detection Concept for Robots. Proc. of 11th IFAC World Congress, Tallinn, Estonia, 61–66

    Google Scholar 

  33. Zhirabok A.N., Preobragenskaya O.V. (1993) Instrument Fault Detection in Nonlinear Dynamic Systems. Proc. of 1993 IEEE International Conference on Systems, Man, and Cybernetics, Le Touquet, France, 114–119

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leuschen, M.L., Walker, I.D., Cavallaro, J.R. (2003). Nonlinear Fault Detection for Hydraulic Systems. In: Caccavale, F., Villani, L. (eds) Fault Diagnosis and Fault Tolerance for Mechatronic Systems:Recent Advances. Springer Tracts in Advanced Robotics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45737-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45737-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44159-5

  • Online ISBN: 978-3-540-45737-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics