Skip to main content

Cell Retention Devices for Suspended-Cell Perfusion Cultures

  • Chapter
  • First Online:
Book cover Tools and Applications of Biochemical Engineering Science

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 74))

Abstract

Perfusion cultures of animal cells have several advantages over batch or fed-batch cultures. They give, for instance, higher productivities and a consistent product quality, and allow steady state operation and better cell physiology control. However, one of the main aspects limiting performance and scale-up of perfusion processes is the need for an adequate cell retention device. The devices currently in use for stirred perfusion bioreactors are continuous centrifuges, tangential flow membrane filters, dynamic filters, spin-filters, ultrasonic and di- electrophoretic separators, gravity settlers and, more recently, hydrocyclones. The advantages and disadvantages of each of these methods will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthold W, Kempken R (1994) Cytotechnology 15:229

    CAS  Google Scholar 

  2. Emery N, Gerin P (1998) Biofutur 184(dec):26

    Google Scholar 

  3. Griffiths JB (1992) J Biotechnol 22:21

    CAS  Google Scholar 

  4. Lubiniecki AS (1998) Cytotechnology 28:139

    Google Scholar 

  5. Yang JD, Angelillo Y, Chaudhry M, Goldenberg C, Goldenberg DM (2000) Biotechnol Bioeng69:74

    CAS  Google Scholar 

  6. Birch JR, Arathoon R (1990) In: Lubiniecki AS (ed) Large-scale mammalian cell culture technology. Marcel Dekker, New York, p 251

    Google Scholar 

  7. Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Biotechnol Bioeng 67:435

    CAS  Google Scholar 

  8. Avgerinos GC, Drapeau D, Socolow JS, Mao J, Hsiao K, Broeze RJ (1990) BioTechnol 8:54

    CAS  Google Scholar 

  9. Griffiths JB (1990) In: Lubiniecki AS (ed) Large-scale mammalian cell culture technology. Marcel Dekker, New York, p 217

    Google Scholar 

  10. Kadouri A, Spier RE (1997) Cytotechnology 24:89

    Google Scholar 

  11. Burrows MT (1912) Anat Rec 6:141

    Google Scholar 

  12. Su WW (2000) In: Spier RE (ed) Encyclopedia of cell technology-Volume 1. John Wiley & Sons, New York, p 230

    Google Scholar 

  13. Deo YM, Mahadevan MD, Fuchs R ( 1996) Biotechnol Prog 12:57

    CAS  Google Scholar 

  14. Heine H, Biselli M, Wandrey C ( 1999) In: Bernard A, Griffiths B, Noé W, Wurm F (eds) Animal cell technology: products from cells, cells as products. Kluwer, Dordrecht, p 83

    Google Scholar 

  15. Lehmann J, Vorlop J, Büntemeyer H (1988) In: Spier RE, Griffiths JB (eds) Animal cell biotechnology, vol 3. Academic Press, London, p 221

    Google Scholar 

  16. Roth G, Smith CE, Schoofs GM, Montgomery TJ, Ayala JL, Horwitz JI (1997) Biopharm 10(oct):30

    Google Scholar 

  17. Zeng AP, Deckwer WD (1999) Biotechnol Prog 15:373

    CAS  Google Scholar 

  18. Woodside SM, Bowen BD, Piret JM (1998) Cytotechnology 28:163

    Google Scholar 

  19. Fenge C, Klein C, Heuer C, Siegel U, Fraune E (1993) Cytotechnology 11:233

    CAS  Google Scholar 

  20. Trocha M, von Rohr PR, Sümeghy Z (1997) In: Carrondo MJT (ed) Animal cell technology. Kluwer, Dordrecht, p 405

    Google Scholar 

  21. Tebe H, Lütkemeyer D, Gudermann F, Heidemann R, Lehmann J ( 1997) Cytotechnology 22:119

    Google Scholar 

  22. Tebe H, Gudermann F, Lütkemeyer D, Lehmann J (1996) In: Carrondo MJT, Griffiths B, Moreira JLP (eds) Animal cell technology: from vaccines to genetic medicine, Kluwer Academic Pub, Dordrecht, p 391

    Google Scholar 

  23. Kempken R, Preissmann A, Berthold W (1995) Biotech Bioeng 46:132

    CAS  Google Scholar 

  24. Heiskanen K (1993) Particle Classification. Chapman & Hall, London

    Google Scholar 

  25. Miller RG, Phillips RA (1969) J Cell Physiol 73:191

    CAS  Google Scholar 

  26. Hülscher M, Scheibler U, Onken U (1992) Biotechnol Bioeng 39:442

    Google Scholar 

  27. Wen Z-Y, Teng X-W, Chen F (2000) J Biotech 79:1

    CAS  Google Scholar 

  28. Freshney RY (1994) Culture of Animal Cells, 4th edn. Wiley, New York

    Google Scholar 

  29. Frachon M, Cilliers JJ (1999) Chem Eng J 73:53

    CAS  Google Scholar 

  30. Nageswararao K (2000) Chem Eng J 80:251

    CAS  Google Scholar 

  31. Coelho MAS, Medronho RA (2001) Chem Eng J (in press)

    Google Scholar 

  32. Svarovsky L (ed) (1990) Solid-Liquid Separation, 3rd edn. Butterworths, London

    Google Scholar 

  33. Medronho RA (2002) Solid-liquid separation. In: Mattiasson B, Hatti-Kaul R (eds) Isolation and purification of proteins. Marcel Dekker Inc, New York (in press)

    Google Scholar 

  34. Hamamoto K, Ishimaru K, Yokoyama S, Tokashiki M (1989) J Ferment Bioeng 67:190

    Google Scholar 

  35. Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990) Cytotechnology 3:239

    CAS  Google Scholar 

  36. Tokashiki M, Yokoyama S (1997) Bioreactor designed for animal cells. In: Hauser H, Wagner R (eds) Mammalian cell biotechnology in protein production. Walter de Gruyter, Berlin, p 279

    Google Scholar 

  37. Björling T, Dudel U, Fenge C (1995) In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animall cell technology: developments towards the 21st century. Kluwer Academic Pub, Dordrecht, p 671

    Google Scholar 

  38. Yokoyama S, Takamatsu H, Hamamoto K, Motoki M, Arai T, Ishimaru K, Kimura M, Tanokura A, Ono S, Nagura K, Tokashiki M (1995). In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal cell technology: developments towards the 21st century. Kluwer Academic Pub, Dordrecht, p 917

    Google Scholar 

  39. Takamatsu H, Hamamoto K, Ishimaru K, Yokoyama S, Tokashiki M (1996) Appl Microbiol Biotechnol 45:454

    CAS  Google Scholar 

  40. Jäger V (1992) In: Kreysa G, Driesel AJ (eds) Microbial principles in bioprocesses: cell culture technology, downstream processing and recovery. DECHEMA, Frankfurt am Main, p 265

    Google Scholar 

  41. Jäger V (1992) In: Murakami H, Shirahata S, Tachibana H (eds) Animal cell technology: basic & applied aspects. Kluwer Academic Pub, Dordrecht, p 209

    Google Scholar 

  42. Jäger V ( 1992) In: Spier RE, Griffiths JB, MacDonald C. In Animal cell technology: developments, processes and products. Butterworth-Heinemann, Oxford, p 397

    Google Scholar 

  43. Apelman S (1992) In: Murakami H, Shirahata S, Tachibana H (eds) Animal cell technology: basic & applied aspects. Kluwer Academic Pub, Dordrecht, p 149

    Google Scholar 

  44. Johnson M, Lantier S, Massie B, Lefebvre G, Kamen AA (1996) Biotechnol Prog 12:855

    CAS  Google Scholar 

  45. Castilho LR, Medronho RA (2000) Miner Eng 13:183

    CAS  Google Scholar 

  46. Medronho RA, Schütze J, Deckwer W-D (2002) Braz J Chem Eng (in press)

    Google Scholar 

  47. He P, Salcudean M, Gartshore IS (1999) Chem Eng Res Des 77:429

    CAS  Google Scholar 

  48. Dai GQ, Li JM, Chen WM (1999) Chem Eng J74:217

    CAS  Google Scholar 

  49. Averous J, Fuentes R (1997) Can Metall Quart 36:309

    CAS  Google Scholar 

  50. Devulapalli B, Rajamani RK (1996) In: Claxton D, Svarovsky L, Thew M (eds) Hydrocyclones’ 96. Mechanical Engineering Publications, London & Bury Saint Edmunds, p 83

    Google Scholar 

  51. Rickwood D, Onions J, Bendixen B, Smyth I (1992) In: Svarovsky L, Thew MT (eds) Hydrocyclones: Analysis and Applications. Kluwer Academic Pub, Dordrecht, p 109

    Google Scholar 

  52. Yuan H, Rickwood D, Smyth IC, Thew MT (1996) Bioseparation 6:159

    CAS  Google Scholar 

  53. Yuan H, Thew MT, Rickwood D (1996) In: Claxton D, Svarovsky L, Thew M (eds) Hydrocyclones’ 96. Mechanical Engineering Publications, London & Bury Saint Edmunds,p 135

    Google Scholar 

  54. Harrison STL, Davies GM, Scholtz NJ, Cilliers JJ (1994) In: Pyle DL (ed) Separations for Biotechnology 3. SCI, The Royal Society of Chemistry, Cambridge, p 214

    Google Scholar 

  55. Cilliers JJ, Harrison STL (1996) In: Claxton D, Svarovsky L, Thew M (eds) Hydrocyclones’ 96. Mechanical Engineering Publications, London & Bury Saint Edmunds, p 123

    Google Scholar 

  56. Cilliers JJ, Harrison STL (1997) Chem Eng J 65:21

    CAS  Google Scholar 

  57. Rickwood D, Freeman GJ, McKechnie M ( 1996) In: Claxton D, Svarovsky L, Thew M (eds) Hydrocyclones’96. Mechanical Engineering Publications, London & Bury Saint Edmunds, p 161

    Google Scholar 

  58. Matta VM, Medronho RA (2000) Bioseparation 9:43

    Google Scholar 

  59. Thorwest I, Bohnet M (1992) Chem Ing Tech 64:1123

    Google Scholar 

  60. Ortega-Rivas E, Medina-Caballero HP (1996) Powder Hand Proc 8:355

    CAS  Google Scholar 

  61. Bednarsky S (1996) In: Claxton D, Svarovsky L, Thew M (eds) Hydrocyclones’96. Mechanical Engineering Publications, London & Bury Saint Edmunds, p 151

    Google Scholar 

  62. Marschall A (1997) Dr. rer. nat. Thesis, Technical University of Braunschweig

    Google Scholar 

  63. Müller M (2000) Dr.-Ing. Thesis, Technical University of Braunschweig

    Google Scholar 

  64. Lübberstedt M (2000) MSc Thesis, University of Applied Sciences of Berlin (TFH-Berlin)

    Google Scholar 

  65. Lübberstedt M, Medronho RA, Anspach FB, Deckwer W-D (2000) Chem Ing Tech 72:1089

    Google Scholar 

  66. Lübberstedt M, Medronho RA, Anspach FB, Deckwer W-D (2000) Proc Biotechnology 2000, vol 1, Dechema eV, Frankfurt am Main, p 460

    Google Scholar 

  67. Bradley D (1965) The Hydrocyclone. Pergamon Press, Oxford

    Google Scholar 

  68. Yim SS, Shamlou PA (2000) Adv Biochem Eng Biotechnol 67:83

    CAS  Google Scholar 

  69. Born C, Zhang Z, Al-Rubeai M, Thomas CR (1992) Biotechnol Bioeng 40:1004

    CAS  Google Scholar 

  70. Tokashiki M, Arai T (1989) Cytotechnology 2:5

    Google Scholar 

  71. Tokashiki M, Arai T (1991) In: Spier RE, Griffiths JB, Meignier B (eds) Production of biologicals from animal cells in culture, Butterworth-Heinemann, Oxford, p 467

    Google Scholar 

  72. Arai T, Yokoyama S, Tokashiki M (1993) In: Kaminogawa S, Ametani A, Hachimura S (eds) Animal cell technology: basic & applied aspects, Vol 5. Kluwer Academic Pub, Dordrecht, p 149

    Google Scholar 

  73. Batt BC, Davis RH, Kompala DS (1990) Biotechnol Prog 6:458

    CAS  Google Scholar 

  74. Searles JA, Todd P, Kompala DS (1994) Biotechnol Prog 10:198

    CAS  Google Scholar 

  75. Searles JA, Todd P, Kompala DS (1994) In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products for today prospects for tomorrow, Butterworth-Heinemann, Oxford, p 240

    Google Scholar 

  76. Hansen HA, Damgaard B, Emborg C (1993) Cytotechnology 11:155

    CAS  Google Scholar 

  77. Knaack C, André G, Chavarie C (1994) In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products for today prospects for tomorrow, Butterworth-Heinemann, Oxford, p 230

    Google Scholar 

  78. Thompson KJ, Wilson JS ( 1994) In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products for today prospects for tomorrow, Butterworth-Heinemann, Oxford, p 227

    Google Scholar 

  79. Stevens J, Eickel S, Onken U (1994) In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products for today prospects for tomorrow, Butterworth-Heinemann, Oxford, p 234

    Google Scholar 

  80. Himmelfarb P, Thayer PS, Martin HE (1969) Science 164:555

    CAS  Google Scholar 

  81. Yabannavar VM, Singh V, Connelly NV ( 1994) Biotechnol Bioeng 43:159

    CAS  Google Scholar 

  82. Segré G, Silberberg A (1961) Nature 189:209

    Google Scholar 

  83. Drew DA, Schonberg JA, Belfort G (1991) Chem Eng Sci 46:3219

    CAS  Google Scholar 

  84. Belfort G (1988) J Membr Sci 35:245

    CAS  Google Scholar 

  85. Favre E, Thaler T (1992) Cytotechnology 9:11

    CAS  Google Scholar 

  86. Varecka R, Scheirer W (1987) Develop Biol Standard 66:269

    CAS  Google Scholar 

  87. Esclade LRJ, Carrel S, Péringer P (1991) Biotechnol Bioeng 38:159

    CAS  Google Scholar 

  88. Tolbert WR, Feder J, Kimes RC ( 1981 ) In Vitro 17:885

    CAS  Google Scholar 

  89. Yabannavar VM, Singh V, Connelly NV (1992) Biotechnol Bioeng 40:925

    CAS  Google Scholar 

  90. Iding K, Lütkemeyer D, Fraune E, Gerlach K, Lehmann J (2000) Cytotechnology 34:141

    CAS  Google Scholar 

  91. Radlett PJ (1972) J Appl Chem Biotechnol 22:495

    CAS  Google Scholar 

  92. van Reis R, Leonard, LC, Hsu CC, Builder SE (1991) Biotechnol Bioeng 38:413

    Google Scholar 

  93. Maiorella B, Dorin G, Carion A, Harano D (1991) Biotechnol Bioeng 37:121

    CAS  Google Scholar 

  94. Zhang S, Handa-Corrigan A, Spier RE (1993) Biotechnol Bioeng 41:685

    CAS  Google Scholar 

  95. Velez D, Miller L, Macmillan JD (1989) Biotechnol Bioeng 33:938

    CAS  Google Scholar 

  96. Shiloach J, Kaufman JB, Kelly RM (1986) Biotechnol Prog 2:230

    Google Scholar 

  97. Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) Cytotechnology 14:61

    CAS  Google Scholar 

  98. Smith CG, Guillaume JM, Greenfield PF, Randerson DH (1991) Bioproc Eng 6:213

    Google Scholar 

  99. de la Broise D, Noiseux M, Massie B, Lemieux R ( 1992) Biotechnol Bioeng 40:25

    Google Scholar 

  100. Eckstein EC, Bailey DG, Shapiro AH (1974) J Fluid Mech 79:191

    Google Scholar 

  101. Vasseur P, Cox RG (1976) J Fluid Mech 78:385

    Google Scholar 

  102. de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Biotechnol Bioeng 38:781

    Google Scholar 

  103. Brennan AJ, Shevitz J, Macmillan JD (1987) Biotechnol Tech 1:169

    CAS  Google Scholar 

  104. Vogel JH, Kroner KH (1999) Biotechnol Bioeng 63:663

    CAS  Google Scholar 

  105. Bouzerar R, Jaffrin MY, Ding L, Paullier P (2000)AIChE J 46:257

    CAS  Google Scholar 

  106. Büntemeyer H, Bödeker BGD, Lehmann J (1987) In: Spier RE, Griffiths JB (eds) Modern approaches to animal cell technology. Butterworth, London, p 411

    Google Scholar 

  107. Fraune E, Meichsner S, Kamal MN (1997) In: Carrondo MJT (ed) Animal cell technology. Kluwer, Dordrecht, p 283

    Google Scholar 

  108. Engler J, Wiesner MR (2000) Wat Res 34:557

    CAS  Google Scholar 

  109. Frenander U, Jönsson AS (1996) Biotechnol Bioeng 52:397

    CAS  Google Scholar 

  110. Nuortila-Jokinen J, Nyström M ( 1996) J Membr Sci 119:99

    CAS  Google Scholar 

  111. Meyer F, Gehmlich I, Guthke R, Gorak A, Knorre WA (1998) Biotechnol Bioeng 59:189

    CAS  Google Scholar 

  112. Pessoa AP, Vitolo M (1998) Proc Biochem 33:39

    CAS  Google Scholar 

  113. Kempken R, Rechtsteiner H, Schäfer J, Katz U, Dick O, Weidemeier R, Sellick I ( 1997) In: Carrondo MJT (ed) Animal cell technology. Kluwer, Dordrecht, p 379

    Google Scholar 

  114. Castilho LR, Anspach FB, Deckwer WD (2000) Proc Biotechnology 2000, vol 4, Dechema eV, Frankfurt am Main, p 252

    Google Scholar 

  115. Pui PWS, Trampler F, Sonderhoff AS, Gröschl M, Kilburn D G, Piret JM ( 1995) Biotechnol Prog 11:146

    CAS  Google Scholar 

  116. Woodside, SM, Bowen BD, Piret JM (1997) In: Carrondo MJT, Griffiths B, Moreira JLP (eds) Animal cell technology: from vaccines to genetic medicine, Kluwer Academic Pub, Dordrecht, p 251

    Google Scholar 

  117. Woodside, SM, Piret JM, Gröschl M, Benes, E, Bowen BD (1998) AIChE J 44:1976

    CAS  Google Scholar 

  118. Woodside, SM, Bowen BD, Piret JM (1997) AIChE J 43:1727

    CAS  Google Scholar 

  119. Hawkes JJ, Limaye MS, Coakley WT (1997) J Appl Microbiol 82:39

    CAS  Google Scholar 

  120. Hawkes JJ, Coakley WT (1996) Enzyme Microb Tech 19:57

    CAS  Google Scholar 

  121. Coakley WT, Whitworth G, Grundy MA, Gould RK, Allman R (1994) Bioseparation 4:73

    CAS  Google Scholar 

  122. Gaida Th, Doblhoff-Dier O, Strutzenberger K, Katinger H (1996) Biotecnol Prog 12:73

    CAS  Google Scholar 

  123. Doblhoff-Dier O, Gaida Th, Katinger H (1994) Biotechnol Prog 10:428

    CAS  Google Scholar 

  124. Kilburn DG, Clarke DJ, Coakley WT, Bardsley DW (1989) Biotechnol Bioeng 34:559

    CAS  Google Scholar 

  125. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Biotechnol Bioeng 69:440

    CAS  Google Scholar 

  126. Zhang J, Collins A, Chen M, Knyazev I, Gentz R (1998) Biotechnol Bioeng 59:351

    CAS  Google Scholar 

  127. Gröschl M, Burger W, Handl B (1998) Acustica 84:815

    Google Scholar 

  128. Trampler F, Sonderhoff AS, Pui PWS, Kilburn DG, Piret JM ( 1994) Bio/Technol 12:281

    CAS  Google Scholar 

  129. Markx GH, Pethig R (1995) Biotechnol Bioeng 45:337

    CAS  Google Scholar 

  130. Markx GH, Talary MS, Pethig R ( 1994) J Biotechnol 32:29

    CAS  Google Scholar 

  131. Brown AP, Harrison AB, Betts WB, O’Neil JG (1997) Microbios 91:55

    CAS  Google Scholar 

  132. Markx GH, Dyda PA, Pethig R (1996) J Biotechnol 51:175

    CAS  Google Scholar 

  133. Huang Y, Wang X-B, Becker FF, Gascoyne PRC (1997) Biophys J 73:1118

    CAS  Google Scholar 

  134. Doscolis A, Kalogerakis N, Behie LA, Kaler KVIS (1997) Biotechnol Bioeng 54:239

    Google Scholar 

  135. Doscolis A, Kalogerakis N, Behie LA (1999) Cytotechnology 30:133

    Google Scholar 

  136. Kalogerakis N, Doscolis A, Behie LA (1998) In Merten OW, Perrin P, Griffiths B (eds) New developments and new applications in animal cell technology, Kluwer Academic Pub, Dordrecht, p 369

    Google Scholar 

  137. Svarovsky L (1985) Solid-liquid separation processes and technology. Elsevier Science Pub, Amsterdam

    Google Scholar 

  138. Rebsamen E, Goldinger W, Scheirer W, Merton OW, Palfi GE (1987) In: Spier RE, Griffiths JB (eds) Modern approaches to animal cell technology. Butterworth, London, p 548

    Google Scholar 

  139. Rebsamen E, Goldinger W, Scheirer W, Merton OW, Palfi GE (1987) Develop Biol Standard 66:273

    CAS  Google Scholar 

  140. Hawrylik SJ, Wasilko DJ, Pillar JS, Cheng JB, Lee SE (1994) Cytotechnology 15:253

    CAS  Google Scholar 

  141. Mercille S, Johnson M, Lemieux R, Massie B (1994) Biotechnol Bioeng 43:833

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Wolf-Dieter Deckwer on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castilho, L.R., Medronho, R.A. (2002). Cell Retention Devices for Suspended-Cell Perfusion Cultures. In: Schügerl, K., et al. Tools and Applications of Biochemical Engineering Science. Advances in Biochemical Engineering/Biotechnology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45736-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45736-4_7

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42250-1

  • Online ISBN: 978-3-540-45736-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics