Polymers from Renewable Resources

  • Margaretha Söderqvist Lindblad
  • Yan Liu
  • Ann-Christine Albertsson
  • Elisabetta Ranucci
  • Sigbritt Karlsson
Part of the Advances in Polymer Science book series (POLYMER, volume 157)


From the point of view of making novel polymers with inherent environment-favorable properties such as renewability and degradability, a series of interesting monomers are found in the metabolisms and cycles of nature. This review presents and discusses a number of aliphatic polyesters which show interesting applications as biomedical materials and degradable packages. Available from nature are amino acids, microbial metabolites from the conversion of glucose and other monosaccharides (e.g., acetic acid, acetone, 2,3-butanediol, butyric acid, isopropanol, propionic acid), lactic acid, ethanol and fatty acids. A series of biodegradable polymers with different properties and different potential industrial uses were made starting with succinic acid and/or 1,3-propanediol. There were two routes for making the polyester-based materials; the direct ring-opening polymerization of lactones (cyclic esters) synthesized from 1,3-propanediol, and the chain-extension of α,ω-dihydroxy-terminated oligomeric polyesters produced by thermal polycondensation of 1,3-propanediol and succinic acid (oligo(propylene succinate)s).


Monomers from renewable resources Polymers from renewable resources 1,3-Propanediol Succinic acid Lactones Cyclohexanedimethanol Polyethyleneglycol Chain-extension Poly(ester-urethane)s Poly(ester-carbonate)s 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilke D (1999) Appl Microbiol Biot 52:135CrossRefGoogle Scholar
  2. 2.
    Albertsson AC, Ljungqvist O (1988) Acta polym 39:95CrossRefGoogle Scholar
  3. 3.
    Ranucci E, Liu Y, Lindblad MS, Albertsson AC (2000) Macromol Rapid Comm 21:680CrossRefGoogle Scholar
  4. 4.
    Liu Y, Lindblad MS, Ranucci E, Albertsson AC (2001) J Polym Sci Pol Chem 39:630CrossRefGoogle Scholar
  5. 5.
    Liu Y, Ranucci E, Lindblad MS, Albertsson AC (2001) J Polym Sci Pol Chem 39:2508CrossRefGoogle Scholar
  6. 6.
    Liu Y, Ranucci E, Lindblad MS, Albertsson AC (manuscript)Google Scholar
  7. 7.
    Biebl H, Menzel K, Zeng AP, Deckwer WD (1999)Appl Microbiol Biot 52:289CrossRefGoogle Scholar
  8. 8.
    Freund A (1881) Monatsh Chem 2:636CrossRefGoogle Scholar
  9. 9.
    Deckwer WD (1995) Fems Microbiol Rev 16:143CrossRefGoogle Scholar
  10. 10.
    Lee PC, Lee WG, Lee SY, Chang HN (1999) Process Biochem 35:49CrossRefGoogle Scholar
  11. 11.
    Nghiem NP, Davison BH, Suttle BE, Richardson GR (1997) Appl Biochem Biotech 63:565CrossRefGoogle Scholar
  12. 12.
    Penco M, Donetti R, Mendichi R, Ferruti P (1998) Macromol Chem Physic 199:1737CrossRefGoogle Scholar
  13. 13.
    Penco M, Becattini M, Ferruti P, D’Antone S, Deghenghi R (1996) Polym Advan Technol 7:536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Margaretha Söderqvist Lindblad
    • 1
  • Yan Liu
    • 1
  • Ann-Christine Albertsson
    • 1
  • Elisabetta Ranucci
    • 1
  • Sigbritt Karlsson
    • 1
  1. 1.Department of Polymer TechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations