Skip to main content

An Elliptic Operator for Constructing Conformal Metrics in Geometric Deformable Models

  • Conference paper
  • First Online:
  • 1247 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

Abstract

The geometric deformable model (GDM) provides a useful framework for segmentation by integrating the energy minimization concept of classical snakes with the topologically flexible gradient flow. The key aspect of this technique is the image derived conformal metric for the configuration space. While the theoretical and numerical aspects of the geometric deformable model have been discussed in the literature, the formation of the conformal metric itself has not received much attention. Previous definitions of the conformal metric do not allow the GDM to produce reliable segmentation results in low-contrast or highblur regions. This paper examines the desired properties of the conformal metric with regard to the image information and proposes an elliptic partial differential equation to construct the metric. Our method produces similar results to other metric definitions in high-contrast regions, but produces better results in low-contrast, high-blur situations.

Acknowledgments

This work was funded partially by NIH grant No. 1 R01 CA 78485-01A1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bart M. ter Harr Romeny (Ed.): Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, 1994

    Google Scholar 

  2. Briggs, W. L.: A Multigrid Tutorial. SIAM Press, 1987

    Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Proc. 5th Int. Conf. Computer Vision, pp. 694–699, 1995

    Google Scholar 

  4. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math., vol. 66, pp. 1–31, 1993

    Article  MATH  MathSciNet  Google Scholar 

  5. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry: Methods and Applications, Part 1. Springer-Verlag, New York, NY, 1984

    Google Scholar 

  6. Elder, J.H.: Are Edges Incomplete?. Int. J. Computer Vision, vol. 34, no. 2, pp. 97–122, 1999

    Article  MathSciNet  Google Scholar 

  7. Elder, J.H., Zucker, S.W.: Local Scale Control for Edge Detection and Blur Estimation. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 7, pp. 699–716, 1998

    Article  Google Scholar 

  8. Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891–906, 1991

    Article  Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes:Active Contour Models. Int. J. Computer Vision, vol. 1, no. 4, pp. 321–331, 1988

    Article  Google Scholar 

  10. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal Curvature Flows: From Phase Transitions to Active Vision. Arch. Rational Mech. Anal., vol. 134, pp. 275–301, 1996

    Article  MATH  MathSciNet  Google Scholar 

  11. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient Flows and Geometric Active Contour Models. Proc. ICCV, pp. 810–815, June 1995

    Google Scholar 

  12. Ma, T., Tagare, H.D.: Consistency and Stability of Active Contours with Euclidean and Non-Euclidean Arc Lengths. IEEE Trans. Image Processing, vol. 8, no. 11, pp. 1549–1559, 1999

    Article  MATH  MathSciNet  Google Scholar 

  13. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995

    Article  Google Scholar 

  14. McInerney, T., Terzopoulos, D.: Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation. IEEE Trans. Medical Imaging, vol. 18, no. 10, pp. 840–850, 1999

    Article  Google Scholar 

  15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B. P.: Numerical Recipes in C. Cambridge University Press, Cambridge, UK, 1992

    MATH  Google Scholar 

  16. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, U.K. 1999

    MATH  Google Scholar 

  17. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A Geometric Snake Model for Segmentation of Medical Imagery. IEEE Trans. Medical Imaging, vol. 16, no. 2, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wyatt, C., Ge, Y. (2001). An Elliptic Operator for Constructing Conformal Metrics in Geometric Deformable Models. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics