Skip to main content

Theoretical and experimental investigation of the coalescence efficiency of droplets in simple shear flow

  • Conference paper
  • First Online:
  • 757 Accesses

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 118))

Abstract

The coalescence efficiency of two Newtonian droplets submerged in a Newtonian fluid subjected to a simple shear flow was investigated experimentally and theoretically. The experimental investigation was based on observing collisions between two droplets under a microscope. The theoretical investigation considered three drainage models: immobile, partially mobile and mobile interfaces. Both the experimental results and the theoretical analysis showed that a critical approach angle exists below which the colliding droplets separate. Above this critical angle the collision leads to coalescence. Knowledge of the critical angle permits calculation of the coalescence efficiency. The dependence of the coalescence efficiency on various dimensionless groups such as the flow number, the capillary number and the viscosity ratio was studied. The theoretical analysis indicated that the coalescence efficiency decreases as the capillary number and the flow number increase. The experimental results showed that the coalescence efficiency goes through a minimum as the value of the flow number increases. The discrepancy between the experimental and the theoretical results was attributed to some mechanism that enhances coalescence and that is not accounted for in the equation used for the critical thickness for film rupture. Both the experimental and the theoretical results indicated that the coalescence efficiency decreases as the viscosity ratio decreases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Groeneweg F, van Voorst Vader F, Agterof WGM (1993) Chem Eng Sci 48:229

    Article  CAS  Google Scholar 

  2. Arp PA, Mason SG (1976) Can J Chem 54:3769

    Article  CAS  Google Scholar 

  3. Guido S, Simeone M (1998) J Fluid Mech 357:1

    Article  CAS  Google Scholar 

  4. Jaeger PT, Janssen JJM, Groeneweg F, Agterof WGM (1994) Colloids Surf 85:255

    Article  CAS  Google Scholar 

  5. Abid S, Chesters AK (1994) Int J Multiphase Flow 20:613

    Article  CAS  Google Scholar 

  6. Chesters AK (1991) Trans Inst Chem Eng 69:259

    CAS  Google Scholar 

  7. de Bruijn RA (1989) PhD thesis. Eindhoven University, Eindhoven, The Netherlands

    Google Scholar 

  8. Tomotika S (1935) Proc R Soc Lond Ser A 153:302

    Google Scholar 

  9. Mikami T, Cox RG, Mason SG (1975) Int J Multiphase Flow 2:113

    Article  Google Scholar 

  10. van de Ven TGM, Mason SG (1977) Colloid Polym Sci 255:468

    Article  Google Scholar 

  11. van de Ven TGM (1982) Adv Colloid Interface Sci 17:105

    Article  Google Scholar 

  12. Patlazhan SA, Lindt JT (1996) J Rheol 40:1095

    Article  CAS  Google Scholar 

  13. Wang H, Zinchenko AZ, Davis RH (1994) J Fluid Mech 265:161

    Article  CAS  Google Scholar 

  14. Brazier-Smith PR, Jennings SG, Latham J (1972) Proc R Soc Lond Ser A 326:393

    Article  Google Scholar 

  15. Rother MA, Zinchenko AZ, Davis RH (1997) J Fluid Mech 346:117

    Article  CAS  Google Scholar 

  16. Wright H, Ramkrishna D (1994) AIChE J 40:767

    Article  CAS  Google Scholar 

  17. Kumar S, Kumar R, Gandhi KS (1993) Chem Eng Sci 48:2025

    Article  CAS  Google Scholar 

  18. Muralidhar R, Ramkrishna D (1986) Ind Eng Chem Fundam 25:554

    Article  CAS  Google Scholar 

  19. Adler PM (1981) J Colloid Interface Sci 83:106

    Article  CAS  Google Scholar 

  20. Mousa H, van de Ven TGM (1991) Colloids Surf 60:39

    Article  CAS  Google Scholar 

  21. Chesters AK, Bazhlekov IB (2000) J Colloid Interface Sci 230:229

    Article  CAS  Google Scholar 

  22. Klaseboer E (1998) PhD thesis. Institute National Polytechnique de Toulouse

    Google Scholar 

  23. Allan RS, Mason SG (1962) J Colloid Interface Sci 17:383

    CAS  Google Scholar 

  24. Bazhlekov IB, Chesters AK, van de Vosse FN (2000) Int J Multiphase Flow 26:445

    Article  CAS  Google Scholar 

  25. MacKay, Mason SG (1963) Can J Chem Eng 41:203

    Article  CAS  Google Scholar 

  26. Zhang X, Davis RH (1991) J Fluid Mech 230:479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this paper

Cite this paper

Mousa, H., Agterof, W., Mellema, J. (2001). Theoretical and experimental investigation of the coalescence efficiency of droplets in simple shear flow. In: Koutsoukos, P.G. (eds) Trends in Colloid and Interface Science XV. Progress in Colloid and Polymer Science, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45725-9_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-45725-9_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42241-9

  • Online ISBN: 978-3-540-45725-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics