Skip to main content

Crystal nucleation versus vitrification in charged colloidal suspensions

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 118))

Abstract

We investigated the solidification behaviour of thoroughly deionised aqueous suspensions of polystyrene latex spheres by various optical scattering methods. We found a dramatic increase in the nucleation rate densities with increasing particle number density. Crystalline and nanocrystalline samples showed two relaxation processes on widely separated time scales. For an index-matched suspension of perfluorinated particles an amorphous state was accessible with the glass-typical signature of frozen long-time relaxation. From our results we propose a route into the amorphous state different to that observed in hard-sphere suspensions. It seems that in charged-sphere systems the increased nucleation rate density triggers the appearance of a Bernal-type glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gutzow I, Schmelzer J (1995) The vitreous state. Springer, Berlin Heidelberg, New York

    Google Scholar 

  2. Götze W (1991) In: Hansen J P et al (eds) Liquids, freezing and glass transition. Elsevier, Amsterdam, p 287

    Google Scholar 

  3. Cummins H, Li Z, Hwang GYH, Shen GQ, Du WM, Hernendez J, Toa JN (1997) Z Phys B 103:501

    Article  CAS  Google Scholar 

  4. Palberg T (1999) J Phys Condens Matter 11:R323

    Article  CAS  Google Scholar 

  5. van Megan W (1995) Transp Theor Stat Phys 24:1017

    Article  Google Scholar 

  6. Bartsch E (1995) Transp Theor Stat Phys 24:1125

    Article  CAS  Google Scholar 

  7. van Megen W, Mortensen TC, Williams SR, Müller J (1998) Phys Rev E 58:6073

    Article  Google Scholar 

  8. Lai SK, Ma WJ, van Megen W, Snook IK (1997) Phys Rev E 56:766

    Article  CAS  Google Scholar 

  9. Bartsch E (1998) Curr Opin Colloid Interface Sci 3:577

    Article  CAS  Google Scholar 

  10. Löwen H, Hansen JP, Roux JN (1991) Phys Rev A 44:1169

    Article  Google Scholar 

  11. Kob W, Barrat JL (1997) Phys Rev Lett 78:4581

    Article  CAS  Google Scholar 

  12. Ackerson BJ (1983) Physica A 128:221

    Article  Google Scholar 

  13. Bartlett P, van Megen W (1994) In: Mehta A (ed) Granular matter Springer, Berlin Heidelberg, New York, p 195

    Google Scholar 

  14. Moriguchi I, Kawasaki K, Kawakatsu T (1993) JPhys II 3:1179

    Article  CAS  Google Scholar 

  15. Bolhuis PG, Kofke DA (1994) Phys Rev E 54:634

    Article  Google Scholar 

  16. Meller A, Stavans J (1992) Phys Rev Lett 68:3646

    Article  CAS  Google Scholar 

  17. Kesavamoorthy R, Sood AK, Tata BVR, Arora AK (1998) J Phys C 21:4737

    Article  Google Scholar 

  18. Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J (1998) Europhys Lett. 45:52

    Article  Google Scholar 

  19. Sirota EB, Ou-Yang HD, Sinha SK, Chaikin PM, Axe J, Fujii DY (1989) Phys Rev Lett 62:1524

    Article  CAS  Google Scholar 

  20. Härtl W, Versmold H, Zhang-Heider X (1995) J Chem Phys 102:6613

    Article  Google Scholar 

  21. Beck C, Härtl W, Hempelmann R (1999) J Chem Phys 111:8209

    Article  CAS  Google Scholar 

  22. Evers M, Garbow N, Hessinger D, Palberg T (1998) Phys Rev E 57:6774

    Article  CAS  Google Scholar 

  23. Schöpe H-J, Palberg T (2001) J Colloid Interface Sci 234:149–161

    Article  CAS  Google Scholar 

  24. Schöpe H-J Wette P, Palberg T (1998) J Chem Phys 109:10068(1998)

    Article  Google Scholar 

  25. Aastuen DJW, Clark NA, Swindal JC, Muzny CD (1990) Phase Transitions 21:139

    Article  CAS  Google Scholar 

  26. Pusey PN, van Megen W (1989) Physica A 157:705

    Article  CAS  Google Scholar 

  27. Simon R, Palberg T, Leiderer P (1993) J Chem Phys 99:3030

    Article  CAS  Google Scholar 

  28. Bernai D (1960) Nature 188:908

    Article  Google Scholar 

  29. Bernel D (1960) Nature 185:68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this paper

Cite this paper

Schöpe, H.J., Palberg, T. (2001). Crystal nucleation versus vitrification in charged colloidal suspensions. In: Koutsoukos, P.G. (eds) Trends in Colloid and Interface Science XV. Progress in Colloid and Polymer Science, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45725-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45725-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42241-9

  • Online ISBN: 978-3-540-45725-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics