Advertisement

A Multi Layer Perceptron Approach for Predecting and Modelling the Dynamical Behavior of Cardiac Ventricular Repolarisation.

  • Rajai El Dajani
  • Maryvonne Miquel
  • Paul Rubel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2085)

Abstract

The QT interval measured on the body-surface Electrocardiogram (ECG), corresponds to the time elapsed between the depolarization of the first myocardial ventricular cell (beginning of the Q wave) and the end of the repolarisation of the last ventricular cell (end of the T wave). Abnormalities in the adaptation of the QT interval to changes in the heart rate may facilitate the development of ventricular arrhythmia. None of the formulas previously proposed for the adjustment of QT for changes in heart rate provide satisfactory correction. This due to the “memory phenomenon” (i.e. time delay) ranging up to 3-4 minutes, between a change in the heart rate and the subsequent change in the QT interval. In this paper, patient specific predictive models based on a Multi Layer Perceptron are presented and their predictive performance is tested on real and artificial data.

Keywords

Sudden Cardiac Death Multi Layer Perceptron Artificial Data Multi Layer Satisfactory Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holmberg, M., Holmberg, S., Herlitz, J. (ed): American Journal of Cardiol. The problem of out-of-hospital cardiac-arrest prevalence of sudden death in Europe today. (1999) 83–88Google Scholar
  2. 2.
    Fagundes, ML., Maia, IG., Cruz, F.E., Alves, P.A., Boghossian, S.H., Ribeiro, J.C., Sa, R.: Arq Bras Cardiol. Arrythmogenic cardomyopathy of the right ventricle. Predictive value of QT interval dispersion to assess arrythmogenic risk and sudden death. (2000) 115–124Google Scholar
  3. 3.
    Bazzet, H.C.: Heart. An analysis of the time-relation of eletrocardiograms. (1920) 353–370Google Scholar
  4. 4.
    Franz, M.R., Swedlow, C.D., Liem, L.: Cycle-Length dependence of human ventricular action potential duration in the steady and non-steady state. In: Butrous, GS., Schwartz, PJ., (eds.): Clinical aspects of ventricular repolarisation. Farrand Press London (1989) 163–174Google Scholar
  5. 5.
    Rubel, P., Hamidi, S., Behlouli, H.: Journal of Electrocardiology. Are serial Holter QT, late potential, and wavelet measurement clinically useful? (1996) 52–61Google Scholar
  6. 6.
    Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: Prediction and system modeling, Los Alamos Nat. Lab., Los Alamos, CA, Tech. Rep. (1987) LA-UR-87-2662Google Scholar
  7. 7.
    Arnaud, P., Rubel, P., Morlet, D., Fayn, J., Forlini, M.C.: Method Inform Med. Methodology of ECG interpretation in the Lyon program. (1990) 393–402Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Rajai El Dajani
    • 1
    • 2
  • Maryvonne Miquel
    • 1
    • 2
  • Paul Rubel
    • 1
    • 2
  1. 1.Laboratoire d'Ingénierie des Systèmes d'Information(LISI), Bat 501Institut National des Sciences Appliquées de Lyon (INSA)VilleurbanneFrance
  2. 2.INSERM XR121BronFrance

Personalised recommendations