Advertisement

From Embryonics to POEtic Machines

  • Daniel Mange
  • André Stauffer
  • Gianluca Tempesti
  • Christof Teuscher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2085)

Abstract

The space of bio-inspired hardware can be partitioned along three axes: phylogeny, ontogeny, and epigenesis. We refer to this as the POE model. Our Embryonics (for embryonic electronics) project is situated along the ontogenetic axis of the POE model and is inspired by the processes of molecular biology and by the embryonic development of living beings.

We will describe the architecture of multicellular automata that are endowed with self-replication and self-repair properties. In the conclusion, we will present our major on-going project: a giant self-repairing electronic watch, the BioWatch, built on a new reconfigurable tissue, the electronic wall or e-wall.

Keywords

Faulty Cell Multicellular Organization Molecular Code Electronic Watch Operative Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Mange, M. Sipper, and P. Marchal. Embryonic electronics. BioSystems, 51(3):145–152, 1999.CrossRefGoogle Scholar
  2. 2.
    D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated circuits: The embryonics approach. Proceedings of the IEEE, 88(4):516–541, April 2000.CrossRefGoogle Scholar
  3. 3.
    D. Mange, A. Stauffer, G. Tempesti, and C. Teuscher. Tissu électronique recongigurable, homogène, modulaire, infiniment extensible, à affichage électro-optique et organes d’entrée, commandé par des dispositifs logiques reprogrammables distribués. Patent pending, 2001.Google Scholar
  4. 4.
    D. Mange and M. Tomassini, editors. Bio-Inspired Computing Machines. Presses polytechniques et universitaires romandes, Lausanne, 1998.zbMATHGoogle Scholar
  5. 5.
    C. Ortega and A. Tyrrell. Reliability analysis in self-repairing embryonic systems. In A. Stoica, D. Keymeulen, and J. Lohn, editors, Proceedings of The First NASA/DOD Workshop on Evolvable Hardware, pages 120–128, Pasadena, CA, 1999. IEEE Computer Society.Google Scholar
  6. 6.
    C. Ortega and A. Tyrrell. Self-repairing multicellular hardware: A reliability analysis. In D. Floreano, J.-D. Nicoud, and F. Mondada, editors, Advances in Artificial Life, Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1999.Google Scholar
  7. 7.
    M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauffer. A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Transactions on Evolutionary Computation, 1(1):83–97, April 1997.CrossRefGoogle Scholar
  8. 8.
    L. Wolpert. The Triumph of the Embryo. Oxford University Press, New York, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Daniel Mange
    • 1
  • André Stauffer
    • 1
  • Gianluca Tempesti
    • 1
  • Christof Teuscher
    • 1
  1. 1.Logic Systems LaboratorySwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations