Advertisement

Genetic Algorithm Visualization Using Self-organizing Maps

  • G. Romero
  • J. J. Merelo
  • P. A. Castillo
  • J. G. Castellano
  • M. G. Arenas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2439)

Abstract

This paper gives an overview of evolutionary computation visualization and describes the application of visualization to some well known multidimensional problems. Self-Organizing Maps (SOM) are used for multidimensional scaling and projection. We show how different ways of training the SOM make it more or less adequate for the visualization task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. F. Cox and M. A. A. Cox. Multidimensional Scaling. London: Chapman & Hall, 1994.zbMATHGoogle Scholar
  2. 2.
    B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge, GB: Cambridge University Press, 1996.zbMATHGoogle Scholar
  3. 3.
    Andreas König. A survey of methods for multivariate data projection, visualisation and interactive analysis. In Proc. of the 5th International Conference on Soft Computing and Information/Intelligent Systems (IIZUKA’98), pages 55–59, October 1998.Google Scholar
  4. 4.
    Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.Google Scholar
  5. 5.
    J. W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, pages 401–409, 1969.Google Scholar
  6. 6.
    P. Demartines and J. Hérault. Curvilinear component analysis: a self organizing neural network for non lienar mapping of data sets. IEEE Transactions on Neural Networks, 8:148–154, 1997.CrossRefGoogle Scholar
  7. 7.
    Nicolas Donckers Michael Verleysen John Aldo Lee, Amaury Lendasse. A robust nonlinear projection method. In European Symposium on Artifial Neural Networks (ESANN2000), pages 13–20, April 2000.Google Scholar
  8. 8.
    S. Spangler D. S. Modha and S. Vaithyanathan. Multidimensional cluster visualization using guided tours. Technical Report Reseach Report RJ 10124, IBM Almaden Research Center, San Jose, CA, June 17 1998.Google Scholar
  9. 9.
    T. Kohonen. The Self-Organizing Map. In Proceedings of the IEEE, volume 78, pages 1464–1480, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • G. Romero
    • 1
  • J. J. Merelo
    • 1
  • P. A. Castillo
    • 1
  • J. G. Castellano
    • 1
  • M. G. Arenas
    • 1
  1. 1.Department of Architecture and Computer TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations