Skip to main content

Evolution Strategy with Neighborhood Attraction Using a Neural Gas Approach

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN VII (PPSN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2439))

Included in the following conference series:

Abstract

In evolution strategies with neighborhood attraction (EN) the concepts of neighborhood cooperativeness and learning rules known from neural maps are transferred onto the individuals of evolution strategies. A previous approach, which utilized a neighborhood relationship adapted from self-organizing maps (SOM), appeared to perform as well as or even better than comparable conventional evolution strategies on a variety of common test functions. In this contribution, an EN with a new neighborhood relationship and learning rule based on the idea of neural gas is introduced. Its performance is compared to the SOM-like approach, using the same test functions. It is shown that the neural gas approach is considerably faster in finding the optimum than the SOM approach, although the latter seems to be more robust for multi-modal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pal, S. K., Mitra, S.: Neuro fuzzy pattern recognition: methods in soft computing. Wiley, New York (1999)

    Google Scholar 

  2. Kohonen, T.: Self-Organizing Maps. Springer Verlag, Berlin (1995)

    Google Scholar 

  3. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7 (1994)

    Google Scholar 

  4. Huhse, J., Zell, A.: Evolution strategy with neighborhood attraction. In Bothe, H., Rojas, R., eds.: Proceedings of the Second ICSC Symposium on Neural Computation—NC 2000, ICSC Academic Press, Canada/Switzerland (2000) 363–369

    Google Scholar 

  5. Martinetz, T., Schulten, K.: A “Neural-Gas” network learns topologies. In Kohonen, T., Mäkisara, K., Simula, O., Kangas, J., eds.: Proc. International Conference on Artificial Neural Networks (Espoo, Finland). Volume I., Amsterdam, Netherlands, North-Holland (1991) 397–402

    Google Scholar 

  6. Martinetz, T. M., Berkovich, S. G., Schulten, K. J.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4 (1993) 558–569

    Article  Google Scholar 

  7. Villmann, T.: Evolutionary algorithms and neural networks in hybrid systems. In Verleysen, M., ed.: Proceedings of 9th European Symposium on Artificial Neural Networks—ESANN’2001, Evere, Belgium, D-facto (2001)

    Google Scholar 

  8. Huhse, J., Zell, A.: Investigating the influence of the neighborhood attraction factor to evolution strategies with neighborhood attraction. In Verleysen, M., ed.: Proceedings of 9th European Symposium on Artificial Neural Networks—ESANN’2001, Evere, Belgium, D-facto (2001) 179–184

    Google Scholar 

  9. Schwefel, H. P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser, Basel, Stuttgart (1977) Volume 26 of Interdisciplinary Systems Research, German.

    Google Scholar 

  10. Altenberg, L.: The evolution of evolvability in genetic programming. In Kinnear, K. E., ed.: Advances in Genetic Programming. Complex Adaptive Systems, Cambridge, MIT Press (1994) 47–74

    Google Scholar 

  11. deJong, K.: An analysis of the behaviour of a class of genetic adaptive systems. Master’s thesis, University of Michigan (1975)

    Google Scholar 

  12. Bäck, T.: A user’s guide to genesys 1.0. Technical report, University of Dortmund, Department of Computer Science

    Google Scholar 

  13. Schwefel, H. P.: Evolution and Optimum Seeking. John Wiley and Sons, New York (1995)

    Google Scholar 

  14. Schwefel, H. P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)

    MATH  Google Scholar 

  15. Ackley, D. H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Boston (1987)

    Google Scholar 

  16. Schwefel, H. P.: Evolutionary learning optimum-seeking on parallel computer architectures. In Sydow, A., Tzafestas, S. G., Vichnevetsky, R., eds.: Proceedings of the International Symposium on Systems Analysis and Simulation 1988, I: Theory and Foundations, Akademie der Wissenschaften der DDR, Akademie-Verlag, Berlin (1988) 217–225

    Google Scholar 

  17. Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. Comp. J. 6 (1963) 163–168

    MATH  MathSciNet  Google Scholar 

  18. Törn, A., Žilinskas, A.: Global Optimization. Volume 350 of Lecture Notes in Computer Science. Springer, Berlin (1989)

    MATH  Google Scholar 

  19. Galar, R.: Simulation of local evolutionary dynamics of small populations. Biological Cybernetics 65 (1991) 37–45

    Article  Google Scholar 

  20. Schwefel, H. P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Volume 26 of Interdisciplinary systems research. Birkhäuser, Basel (1977)

    Google Scholar 

  21. Hansen, N., Ostermeier, A., Gawelczyk, A.: Über die Adaptation von allgemeinen, Koordinatensystem-unabhängigen, normalverteilten Mutationen in der Evolutionsstrategie: Die Erzeugendensystemadaption. Technical report, Technische Universität Berlin (1995)

    Google Scholar 

  22. Ostermeier, A., Gawelcyk, A., Hansen, N.: A derandomized approach to selfadaptation of evolution strategies. Evolutionary Computation 2 (1995) 369–380

    Article  Google Scholar 

  23. Huhse, J., Zell, A.: Evolution strategy with neighborhood attraction—A robust evolution strategy. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H. M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., Burke, E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, California, USA, Morgan Kaufmann (2001) 1026–1033

    Google Scholar 

  24. Huhse, J., Villmann, T., Zell, A.: Investigation of the neighborhood attraction evolutionary algorithm based on neural gas. In: Proceedings of the Sixth International Conference on Neural Networks and Soft Computing (ICNNSC) (to appear). Lecture Notes in Computer Science, Springer (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huhse, J., Villmann, T., Merz, P., Zell, A. (2002). Evolution Strategy with Neighborhood Attraction Using a Neural Gas Approach. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45712-7_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44139-7

  • Online ISBN: 978-3-540-45712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics