Skip to main content

An Evolutionary Algorithm for Controlling Chaos: The Use of Multi—objective Fitness Functions

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature — PPSN VII (PPSN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2439))

Included in the following conference series:

Abstract

In this paper, we study an evolutionary algorithm employed to design and optimize a local control of chaos. In particular, we use a multi—objective fitness function, which consists of the objective function to be optimized and an auxiliary quantity applied as an additional driving force for the algorithm. Numerical results are presented illustrating the proposed scheme and showing the influence of employing such a multi—objective fitness function on convergence of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    Google Scholar 

  2. Baier, G., Klein, M.: Maximum hyperchaos in generalized Hénon maps. Phys. Lett. A151 (1990) 281–284

    MathSciNet  Google Scholar 

  3. Fletcher, R.: Practical Methods of Optimization. John Wiley, Chichester (1987)

    MATH  Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley, Reading MA (1989)

    MATH  Google Scholar 

  5. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs NJ (1980)

    MATH  Google Scholar 

  6. Lin, C.T., Jou, C.P.: Controlling chaos by GA-based reinforcement learning neural network. IEEE Trans. Neural Networks 10 (1999) 846–859

    Article  Google Scholar 

  7. Marin, J., Solé, R.V.: Controlling chaos in unidimensional maps using macroevolutionary algorithms. Phys. Rev. E65 (2002) 026207/1-6

    Google Scholar 

  8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)

    MATH  Google Scholar 

  9. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Packard, H.N.: A genetic learning algorithm for the analysis of complex data. Complex Systems 4 (1990) 543–572

    MATH  MathSciNet  Google Scholar 

  11. Paterakis, E., Petridis, V., Kehagias, A.: Genetic algorithm in parameter estimation of nonlinear dynamical systems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.): Parallel Problem Solving from Nature-PPSN V. Springer-Verlag, Berlin Heidelberg New York (1998) 1008–1017

    Chapter  Google Scholar 

  12. Richter, H., Reinschke, K.J.: Local control of chaotic systems: A Lyapunov approach. Int. J. Bifurcation and Chaos 8 (1998) 1565–1573

    Article  MATH  Google Scholar 

  13. Richter, H., Reinschke, K.J.: Optimization of local control of chaos by an evolutionary algorithms. Physica D144 (2000) 309–334

    MathSciNet  Google Scholar 

  14. Rodriguez-Vázquez, K., Fleming, P.J.: Multi-objective genetic programming for dynamic chaotic systems modelling. In: Congress on Evolutionary Computation, CEC’99, Washington, D.C., USA, (1999) 22–28

    Google Scholar 

  15. Szpiro, G.G.: Forecasting chaotic time series with genetic algorithms. Phys. Rev. E55 (1997) 2557–2568

    Google Scholar 

  16. Weeks, E.R., Burgess, J.M.: Evolving artificial neural networks to control chaotic systems. Phys. Rev. E56 (1997) 1531–1540

    Google Scholar 

  17. Yadavalli, V.K, Dahulee, R.K., Tambe, S.S., Kulkarni, B.D.: Obtaining functional form of chaotic time series evolution using genetic algorithm. Chaos 9 (1999) 789–794

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, H. (2002). An Evolutionary Algorithm for Controlling Chaos: The Use of Multi—objective Fitness Functions. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45712-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44139-7

  • Online ISBN: 978-3-540-45712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics