An Evolutionary Algorithm for Controlling Chaos: The Use of Multi—objective Fitness Functions

  • Hendrik Richter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2439)


In this paper, we study an evolutionary algorithm employed to design and optimize a local control of chaos. In particular, we use a multi—objective fitness function, which consists of the objective function to be optimized and an auxiliary quantity applied as an additional driving force for the algorithm. Numerical results are presented illustrating the proposed scheme and showing the influence of employing such a multi—objective fitness function on convergence of the algorithm.


Genetic Algorithm Local Control Evolutionary Algorithm Chaotic System Chaotic Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)Google Scholar
  2. 2.
    Baier, G., Klein, M.: Maximum hyperchaos in generalized Hénon maps. Phys. Lett. A151 (1990) 281–284MathSciNetGoogle Scholar
  3. 3.
    Fletcher, R.: Practical Methods of Optimization. John Wiley, Chichester (1987)zbMATHGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley, Reading MA (1989)zbMATHGoogle Scholar
  5. 5.
    Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs NJ (1980)zbMATHGoogle Scholar
  6. 6.
    Lin, C.T., Jou, C.P.: Controlling chaos by GA-based reinforcement learning neural network. IEEE Trans. Neural Networks 10 (1999) 846–859CrossRefGoogle Scholar
  7. 7.
    Marin, J., Solé, R.V.: Controlling chaos in unidimensional maps using macroevolutionary algorithms. Phys. Rev. E65 (2002) 026207/1-6Google Scholar
  8. 8.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)zbMATHGoogle Scholar
  9. 9.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  10. 10.
    Packard, H.N.: A genetic learning algorithm for the analysis of complex data. Complex Systems 4 (1990) 543–572zbMATHMathSciNetGoogle Scholar
  11. 11.
    Paterakis, E., Petridis, V., Kehagias, A.: Genetic algorithm in parameter estimation of nonlinear dynamical systems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.): Parallel Problem Solving from Nature-PPSN V. Springer-Verlag, Berlin Heidelberg New York (1998) 1008–1017CrossRefGoogle Scholar
  12. 12.
    Richter, H., Reinschke, K.J.: Local control of chaotic systems: A Lyapunov approach. Int. J. Bifurcation and Chaos 8 (1998) 1565–1573zbMATHCrossRefGoogle Scholar
  13. 13.
    Richter, H., Reinschke, K.J.: Optimization of local control of chaos by an evolutionary algorithms. Physica D144 (2000) 309–334MathSciNetGoogle Scholar
  14. 14.
    Rodriguez-Vázquez, K., Fleming, P.J.: Multi-objective genetic programming for dynamic chaotic systems modelling. In: Congress on Evolutionary Computation, CEC’99, Washington, D.C., USA, (1999) 22–28Google Scholar
  15. 15.
    Szpiro, G.G.: Forecasting chaotic time series with genetic algorithms. Phys. Rev. E55 (1997) 2557–2568Google Scholar
  16. 16.
    Weeks, E.R., Burgess, J.M.: Evolving artificial neural networks to control chaotic systems. Phys. Rev. E56 (1997) 1531–1540Google Scholar
  17. 17.
    Yadavalli, V.K, Dahulee, R.K., Tambe, S.S., Kulkarni, B.D.: Obtaining functional form of chaotic time series evolution using genetic algorithm. Chaos 9 (1999) 789–794zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hendrik Richter
    • 1
  1. 1.Fraunhofer-Institut für Produktionstechnik und AutomatisierungStuttgartGermany

Personalised recommendations