Advertisement

On the Behavior of Evolutionary Global-Local Hybrids with Dynamic Fitness Functions

  • Roger Eriksson
  • Björn Olsson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2439)

Abstract

This paper investigates the ability of evolutionary globallocal hybrid algorithms to handle dynamic fitness functions. Using a model where fitness functions vary in ruggedness as well as in whether changes occur gradually or abruptly, we evaluate the performance of Baldwinian and Lamarckian hybrid strategies and find them capable of locating and tracking a moving global optimum.

Keywords

Local Search Evolutionary Algorithm Local Optimum Hybrid Algorithm Local Search Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University of California, San Diego (1994)Google Scholar
  2. 2.
    Land, M.: Evolutionary algorithms with local search for combinatorial optimization. PhD thesis, University of California, San Diego (1998)Google Scholar
  3. 3.
    Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems 1(1987) 495–502zbMATHGoogle Scholar
  4. 4.
    Whitley, D., Gordon, V.S., Mathias, K.: Lamarckian evolution, the Baldwin effect and function optimization. In Davidor, Y., Schwefel, H.P., eds.: Proc. of the PPSN III, Springer (1994) 6–15Google Scholar
  5. 5.
    Branke, J.: Evolutionary approaches to dynamic optimization problems-updated survey. In: Proc. of the GECCO-2001 Workshop on Evolutionary Algorithms for Dynamic Optimization Problems. (2001) 27–30Google Scholar
  6. 6.
    De Jong, K.A.: Evolving in a changing world. In Raś, Z.W., Skowron, A., eds.: 11th Int. Symp. on Foundations of Intelligent Systems, Springer (1999) 512–519Google Scholar
  7. 7.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 1875–1882Google Scholar
  8. 8.
    Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environments. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 2047–2053Google Scholar
  9. 9.
    Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: A genetic algorithm approach. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proc. of the CEC. Volume 3., IEEE Press (1999) 2031–2038Google Scholar
  10. 10.
    Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4 (1997) 361–394CrossRefGoogle Scholar
  11. 11.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of scientific computing. 2nd edn. Cambridge University Press (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Roger Eriksson
    • 1
  • Björn Olsson
    • 1
  1. 1.Dept. of Computer ScienceUniversity of SkövdeSkövdeSweden

Personalised recommendations