Advertisement

The Delta Operation: From Strings to Trees to Strings

  • Joost Engelfriet
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2300)

Abstract

The delta of a language L consists of the yields of trees of which all paths are in L. The context-free languages are the deltas of the regular languages. The indexed languages are the deltas of the deterministic context-free languages. In general, the nondeterministic (n+1)-iterated pushdown languages are the deltas of the deterministic n-iterated pushdown languages. The recursively enumerable languages are the deltas of the context-free languages. The delta of a string relation R consists of the yields of trees of which all paths are in the R-image of one string. The ET0L languages are the deltas of the relations recognized by deterministic two-tape finite automata. The recursively enumerable languages are the deltas of the finite state transductions.

Keywords

Regular Language Finite Automaton Tree Automaton Tree Language Storage Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aho68]
    A.V. Aho; Indexed Grammars, an Extension of Context-Free Grammars, J. of the ACM 15 (1968), 647–671zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Ber79]
    J. Berstel; Transductions and Context-Free Languages, Teubner, Stuttgart, 1979Google Scholar
  3. [Chr74]
    P. Christensen; Hyper-AFL’s and ET0L Systems, in L Systems (G. Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer Science 15, Springer-Verlag, Berlin, 1974, pp.254–257Google Scholar
  4. [Cul74]
    K. Culik II; On Some Families of Languages Related to Developmental Systems, Internat. J. Comput. Math. 4 (1974), 31–42MathSciNetCrossRefGoogle Scholar
  5. [Dam82]
    W. Damm; The IO-and OI-hierarchies, Theoret. Comput. Sci. 20 (1982), 95–206zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DGoe86]
    W. Damm, A. Goerdt; An Automata-Theoretical Characterization of the OI-hierarchy, Inform. and Control 71 (1986), 1–32zbMATHCrossRefMathSciNetGoogle Scholar
  7. [EHoo93]
    J. Engelfriet, H.J. Hoogeboom; X-automata on ω-words, Theoret. Comput. Sci. 110 (1993), 1–51zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Eng75]
    J. Engelfriet; Tree Automata and Tree Grammars, Lecture Notes, DAIMI FN-10, Aarhus, 1975Google Scholar
  9. [Eng80]
    J. Engelfriet; Some Open Questions and Recent Results on Tree Transducers and Tree Languages, in Formal Language Theory; Perspectives and Open Problems (R.V. Book, Ed.), Academic Press, New York, 1980Google Scholar
  10. [Eng85]
    J. Engelfriet; Hierarchies of Hyper-AFLs, J. of Comput. Syst. Sci. 30 (1985), 86–115zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Eng86]
    J. Engelfriet; Context-Free Grammars with Storage, Leiden University, Technical Report 86-11, 1986Google Scholar
  12. [Eng91]
    J. Engelfriet; Iterated Stack Automata and Complexity Classes, Inform. and Comput. 95 (1991), 21–75CrossRefMathSciNetGoogle Scholar
  13. [ERoz80]
    J. Engelfriet, G. Rozenberg; Fixed Point Languages, Equality Languages, and Representation of Recursively Enumerable Languages, J. of the ACM 27 (1980), 499–518zbMATHCrossRefMathSciNetGoogle Scholar
  14. [ERozS76]
    A. Ehrenfeucht, G. Rozenberg, S. Skyum; A Relationship between the ET0L and EDT0L Languages, Theoret. Comput. Sci. 1 (1976), 325–330zbMATHCrossRefMathSciNetGoogle Scholar
  15. [ERozS80]
    J. Engelfriet, G. Rozenberg, G. Slutzki; Tree Transducers, L Systems, and Two-Way Machines, J. of Comput. Syst. Sci. 20 (1980), 150–202zbMATHCrossRefMathSciNetGoogle Scholar
  16. [ESch77]
    J. Engelfriet, E.M. Schmidt; IO and OI, J. of Comput. Syst. Sci. 15 (1977), 328–353, and J. of Comput. Syst. Sci. 16 (1978), 67–99zbMATHMathSciNetCrossRefGoogle Scholar
  17. [ESvL80]
    J. Engelfriet, E.M. Schmidt, J. van Leeuwen; Stack Machines and Classes of Nonnested Macro Languages, J. of the ACM 27 (1980), 96–117zbMATHCrossRefGoogle Scholar
  18. [EVog86]
    J. Engelfriet, H. Vogler; Pushdown Machines for the Macro Tree Transducer, Theoret. Comput. Sci. 42 (1986), 251–369zbMATHCrossRefMathSciNetGoogle Scholar
  19. [EVog87]
    J. Engelfriet, H. Vogler; Look-Ahead on Pushdowns, Inform. and Comput. 73 (1987), 245–279zbMATHCrossRefMathSciNetGoogle Scholar
  20. [EVog88]
    J. Engelfriet, H. Vogler; High Level Tree Transducers and Iterated Push down Tree Transducers, Acta Informatica 26 (1988), 131–192MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Gin75]
    S. Ginsburg; Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland/American Elsevier, Amsterdam/New York, 1975Google Scholar
  22. [Gre70]
    S.A. Greibach; Chains of Full AFL’s, Math. Syst. Theory 4 (1970), 231–242zbMATHCrossRefMathSciNetGoogle Scholar
  23. [GSte84]
    F. Gécseg, M. Steinby; Tree Automata, Akadémiai Kiadó, Budapest, 1984zbMATHGoogle Scholar
  24. [GSte97]
    F. Gécseg, M. Steinby; Tree Languages, in Handbook of Formal Languages, Volume 3: Beyond Words (G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, Berlin, 1997Google Scholar
  25. [Gue83]
    I. Guessarian; Pushdown Tree Automata, Math. Syst. Theory 16 (1983), 237–263zbMATHCrossRefMathSciNetGoogle Scholar
  26. [HKar91]
    T. Harju, J. Karhumäki; The Equivalence Problem of Multitape Finite Automata, Theoret. Comput. Sci. 78 (1991), 347–355zbMATHCrossRefMathSciNetGoogle Scholar
  27. [KRozS97]
    L. Kari, G. Rozenberg, A. Salomaa; L Systems, in Handbook of Formal Languages, Volume 1: Word, Language, Grammar (G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, Berlin, 1997Google Scholar
  28. [MMor69]
    M. Magidor, G. Moran; Finite Automata over Finite Trees, Techn. Report No. 30, Hebrew University, Jerusalem, 1969Google Scholar
  29. [PRozS98]
    G. Păun, G. Rozenberg, A. Salomaa; DNA Computing; New Computing Paradigms, Springer-Verlag, Berlin, 1998zbMATHGoogle Scholar
  30. [PSak99]
    M. Pelletier, J. Sakarovitch; On the Representation of Finite Deterministic 2-tape Automata, Theoret. Comput. Sci. 225 (1999), 1–63zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Rou70]
    W.C. Rounds; Mappings and Grammars on Trees, Math. Syst. Theory 4 (1970), 257–287zbMATHCrossRefMathSciNetGoogle Scholar
  32. [Roz70a]
    C. Gordon; Abstract Families of Languages, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 4, Utrecht, March 1970Google Scholar
  33. [Roz70b]
    J. Engelfriet; Tree Automata, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 5, Utrecht, March 1970Google Scholar
  34. [Roz70c]
    J. van Leeuwen; Brackets and Parentheses in the Theory of Context-Free Languages, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 6, Utrecht, December 1970Google Scholar
  35. [Roz71a]
    M. Nivat; Sur la fermeture rationnelle des cônes rationnels, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 4, Utrecht, March 1971Google Scholar
  36. [Roz71b]
    J. van Leeuwen; The General Theory of Translation, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 6, Utrecht, April 1971Google Scholar
  37. [Roz71c]
    J. Engelfriet; Tree Automata and Tree Transducers, Seminar on Automata Theory and Mathematical Linguistics (organized by G. Rozenberg), Abstract 8, Utrecht, May 1971Google Scholar
  38. [Roz73]
    G. Rozenberg; Extension of Tabled 0L-systems and Languages, Internat. J. Comp. Inform. Sci. 2 (1973), 311–336CrossRefMathSciNetzbMATHGoogle Scholar
  39. [RozS80]
    G. Rozenberg, A. Salomaa; The Mathematical Theory of L Systems, Academic Press, New York, 1980zbMATHGoogle Scholar
  40. [RSco59]
    M.O. Rabin, D. Scott; Finite Automata and Their Decision Problems, IBM J. Res. 3 (1959), 115–125MathSciNetGoogle Scholar
  41. [Sco67]
    D. Scott; Some Definitional Suggestions for Automata Theory, J. of Comput. Syst. Sci. 1 (1967), 187–212zbMATHGoogle Scholar
  42. [Tha67]
    J.W. Thatcher; Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory, J. of Comput. Syst. Sci. 1 (1967), 317–322zbMATHMathSciNetGoogle Scholar
  43. [Tha73]
    J.W. Thatcher; Tree Automata: An Informal Survey, in Currents in the Theory of Computing (A.V. Aho, Ed.), Prentice-Hall, Englewood Cliffs, 1973, pp.143–172Google Scholar
  44. [Vog86]
    H. Vogler; Iterated Linear Control and Iterated One-Turn Pushdowns, Math. Syst. Theory 19 (1986), 117–133zbMATHCrossRefMathSciNetGoogle Scholar
  45. [Vog88]
    H. Vogler; The OI-hierarchy Is Closed under Control, Inform. and Comput. 78 (1988), 187–204zbMATHCrossRefMathSciNetGoogle Scholar
  46. [Wan75]
    M. Wand; An Algebraic Formulation of the Chomsky-Hierarchy, in Category Theory Applied to Computation and Control (E.G. Manes, Ed.), Lecture Notes in Computer Science 25, Springer-Verlag, Berlin, 1975, pp. 209–213Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joost Engelfriet
    • 1
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations