Skip to main content

Food web structure and the evolution of ecological communities

  • Chapter
  • First Online:
Biological Evolution and Statistical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 585))

Abstract

Simulations of the coevolution of many interacting species are performed using the Webworld model. The model has a realistic set of predator— prey equations that describe the population dynamics of the species for any structure of the food web. The equations account for competition between species for the same resources, and for the diet choice of predators between alternative prey according to an evolutionarily stable strategy. The set of species present undergoes long-term evolution due to speciation and extinction events. We summarize results obtained on the macro-evolutionary dynamics of speciations and extinctions, and on the statistical properties of the food webs that are generated by the model. Simulations begin from small numbers of species and build up to larger webs with relatively constant species number on average. The rate of origination and extinction of species are relatively high, but remain roughly balanced throughout the simulations. When a ‘parent’ species undergoes speciation, the ‘child’ species usually adds to the same trophic level as the parent. The chance of the child species surviving is significantly higher if the parent is on the second or third trophic level than if it is on the first level, most likely due to a wider choice of possible prey for species on higher levels. Addition of a new species sometimes causes extinction of existing species. The parent species has a high probability of extinction because it has strong competition with the new species. Non-parental competitors of the new species also have a significantly higher extinction probability than average, as do prey of the new species. Predators of the new species are less likely than average to become extinct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arditi, R. & Ginzburg, L.R. (1989). Coupling in predator-prey dynamics: ratiodependence. J. Theor. Biol. 139, 311–326.

    Article  Google Scholar 

  2. Arditi, R. & Michalski, J. (1995). Nonlinear food web models and their responses to increased basal productivity. In: Food webs: integration of patterns and dynamics (Polis, G.A. & Winemiller, K.O., eds), pp. 122–133, Chapman & Hall, London.

    Google Scholar 

  3. Bak, P. & Sneppen, K. (1993). Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086.

    Article  PubMed  CAS  Google Scholar 

  4. Bastolla, U., Lässig, M., Manrubia, S.C. & Valleriani, A.(2000). Diversity patterns from ecological models at dynamical equilibrium. eprint: arXiv: nlin.AO/0009025.

    Google Scholar 

  5. Beddington, J. (1975). Mutual interference between parasites or predators and its effect on searching efficiency. Anim. Ecol. 51, 597–624.

    Google Scholar 

  6. Berryman, A.A. & Millstein, J.A. (1989a). Are ecological systems chaotic— and if not, why not? Trends Ecol. Evol. 4, 26–28.

    Article  Google Scholar 

  7. Berryman, A.A. & Millstein, J.A. (1989b). Avoiding chaos-reply. Trends Ecol. Evol. 4, 240–240.

    Article  Google Scholar 

  8. Berryman, A.A. (1992). The origins and evolution of predator-prey theory. Ecology 73, 1530–1535.

    Article  Google Scholar 

  9. Caldarelli, G., Higgs, P.G. & McKane, A.J. (1998). Modelling coevolution in multispecies communities. J. Theor. Biol. 193, 345–358.

    Article  PubMed  Google Scholar 

  10. Cohen, J.E. (1990). A stochastic theory of community food webs VI-Heterogeneous alternatives to the cascade model. Theor. Pop. Biol. 37, 55–90.

    Article  Google Scholar 

  11. Cohen, J.E., Briand, F. & Newman, C.M. (1990). Biomathematics Vol. 20. Community food webs, data and theory. Springer Verlag, Berlin.

    Google Scholar 

  12. Drossel, B. (2001). Biological evolution and statistical physics. eprint: arXiv:condmat/0101409.

    Google Scholar 

  13. Drossel, B., Higgs, P.G. & McKane, A.J. (2001). The influence of predator-prey population dynamics on the long-term evolution of food web structure. J. Theor. Biol. 208, 91–107.

    Article  PubMed  CAS  Google Scholar 

  14. Emlen, J.M. (1984). Population biology. Macmillan, New York.

    Google Scholar 

  15. Goldwasser, L. & Roughgarden, J. (1993). Construction and analysis of a large Caribbean food web. Ecology 74, 1216–1233.

    Article  Google Scholar 

  16. Hall, S.J. & Raffaelli, D. (1991). Food web patterns: lessons from a species-rich web. J. Anim. Ecol. 60, 823–842.

    Article  Google Scholar 

  17. Hallam, T.G. (1986). Community dynamics in a homogeneous environmemt. In: Mathematical ecology. Biomathematics Vol. 17. (Hallam, T.G. and Levin, S.A., eds), pp. 241–285, Springer-Verlag, Berlin.

    Google Scholar 

  18. Hastings, A. & Powell, T. (1991). Chaos in a three-species food chain, Ecology 72, 896–903.

    Article  Google Scholar 

  19. Hofbauer, J. & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  20. Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398.

    Article  Google Scholar 

  21. Huisman, G. & De Boer, R.J. (1997). A formal derivation of the Beddington functional response, J. Theor. Biol. 185, 389–400, and references therein.

    Article  Google Scholar 

  22. Lässig, M., Bastolla, U., Manrubia, S.C. & Valleriani, A. (2001). The shape of ecological networks. eprint: arXiv:nlin.AO/0101026.

    Google Scholar 

  23. Logofet, D.O. (1993). Matrices and graphs: stability problems in mathematical ecology. CRC Press, London.

    Google Scholar 

  24. Martinez, N.D. & Lawton, J.H. (1995). Scale and food web structure-from local to global. Oikos 73, 148–154.

    Article  Google Scholar 

  25. May, R.M. (1974). Stability and complexity in model ecosystems. Monographs in population biology, Vol. 6. Princeton University Press, Princeton. Second edition.

    Google Scholar 

  26. McCann, K. & Yodzis, P. (1994). Biological conditions for chaos in three-species food chain. Ecology 75, 561–564.

    Article  Google Scholar 

  27. Parker, G.A. & Maynard Smith, J. (1990). Optimality theory in evolutionary biology. Nature. 348, 27–33.

    Article  Google Scholar 

  28. Pielou, E.C. (1977). Mathematical ecology. Wiley, New York, Second edition.

    Google Scholar 

  29. Pimm, S.L. (1982). Food webs. Chapman & Hall, London.

    Google Scholar 

  30. Post, D.M., Conners, M.E. & Goldberg, D.S. (2000). Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8–14, and references therein.

    Google Scholar 

  31. Reeve, H.K & Dugatkin, L.A. (1998). Why we need evolutionary game theory. In: Game theory and animal behaviour (Dugatkin, L.A & Reeve, H.K., eds), pp. 304–311. Oxford University Press, Oxford.

    Google Scholar 

  32. Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology. Macmillan, New York.

    Google Scholar 

  33. Solé, R.V., Manrubia, S.C., Benton, M. & Bak, P. (1997). Self-similarity of extinction statistics in the fossil record. Nature 388, 764–767.

    Article  Google Scholar 

  34. Stephens, D. W. & Krebs, J. R. (1986). Foraging theory. Princeton University Press, NJ.

    Google Scholar 

  35. Svirezhev, Yu.M. & Logofet, D.O. (1983). Stability of biological communities. Mir Publishers, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quince, C., Higgs, P.G., McKane, A.J. (2002). Food web structure and the evolution of ecological communities. In: Lässig, M., Valleriani, A. (eds) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol 585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45692-9_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45692-9_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43188-6

  • Online ISBN: 978-3-540-45692-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics