Skip to main content

Exact Solutions for Closest String and Related Problems

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2223))

Included in the following conference series:

Abstract

CLOSEST STRING is one of the core problems in the field of consensus word analysis with particular importance for computational biology. Given k strings of same length and a positive integer d, find a “closest string” s such that none of the given strings has Hamming distance greater than d from s. Closest String is NP-complete. We show how to solve CLOSEST STRING in linear time for constant d (the exponential growth is O(d d. We extend this result to the closely related problems d-MISMATCH and DISTINGUISHING STRING SELECTION. Moreover, we discuss fixed parameter tractability for parameter k and give an efficient linear time algorithm for CLOSEST STRING when k = 3. Finally, the practical usefulness of our findings is substantiated by some experimental results.

Supported by the Deutsche Forschungsgemeinschaft (DFG), project OPAL (optimal solutions for hard problems in computational biology), NI 369/2-1.

Frances and Litman [4] show the NP-completeness of Closest String, considering it from the viewpoint of coding theory (so-called Minimum Radius problem).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard problems: a parameterized point of view. Discrete Mathematics, 229(1–3):3–27, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer. 1999.

    Google Scholar 

  3. P. A. Evans and H. T. Wareham. Practical non-polynomial time algorithms for designing universal DNA oligonucleotides: a systematic approach. Manuscript, April 2001.

    Google Scholar 

  4. M. Frances and A. Litman. On covering problems of codes. Theory of Computing Systems, 30:113–119, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research, 12:415–440, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection problems. In Proc. of 10th ACM-SIAM SODA, pages 633–642, 1999, ACM Press. To appear in Information and Computation.

    Google Scholar 

  7. J. C. Lagarias. Point lattices. In R. L. Graham et al. (eds.) Handbook of Combinatorics, pages 919–966. MIT Press, 1995.

    Google Scholar 

  8. H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8:538–548, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In Proc. of 31st ACM STOC, pages 473–482, 1999. ACM Press.

    Google Scholar 

  10. P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000.

    Google Scholar 

  11. N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time algorithm for the 1-mismatch problem. In Proc. of 5th WADS, number 1272 in LNCS, pages 126–135, 1997, Springer.

    Google Scholar 

  12. N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman, W. Miller, and R. Hardison. Comparison of five methods for finding conserved sequences in multiple alignments of gene regulatory regions. Nucleic Acids Research, 27(19):3899–3910, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gramm, J., Niedermeier, R., Rossmanith, P. (2001). Exact Solutions for Closest String and Related Problems. In: Eades, P., Takaoka, T. (eds) Algorithms and Computation. ISAAC 2001. Lecture Notes in Computer Science, vol 2223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45678-3_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45678-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42985-2

  • Online ISBN: 978-3-540-45678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics