Advertisement

Parameterized Complexity: The Main Ideas and Some Research Frontiers

  • Michael R. Fellows
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2223)

Abstract

The purposes of this paper are two:(1)To give an exposition of the main ideas of parameterized complexity,and (2)To discuss some of the current research frontiers and directions.

Keywords

Parameterized Complexity Vertex Cover Polynomial Time Approximation Scheme Satisfying Assignment Research Frontier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Abrahamson, R. Downey and M. Fellows, “Fixed Parameter Tractability and Completeness IV:O Completeness for WPad PSPACE Analogs,”Annals of Pure and Applied Logic 73 (1995),235–276.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Alber, H. Fernau and R. Niedermeier, “Parameterized Complexity:Exponential Speed-Up for Planar Graph Problems,” in: Proceedings of ICALP 2001,Crete, Greece,Lecture Notes in Computer Science vol.2076 (2001),261–272.MATHGoogle Scholar
  3. 3.
    J. Alber, J. Gramm and R. Niedermeier, “Faster Exact Algorithms for Hard Prob-lems:AParameterized Point of View,rd Discrete Mathematics 229 (2001),3–27.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    S. Arora, “Polynomial Time Approximatio Schemes for Euclidea TSP and Other Geometric Problems,” in:Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, 1996.Google Scholar
  5. 5.
    V. Arvind, “On the Parameterized Complexity of Counting Problems,”Workshop on Parameterized Complexity... Madras,India,Dec.2000.Google Scholar
  6. 6.
    V. Arvind, M.R. Fellows, M. Mahajan, V. Raman, S.S. Rao, F.A. Rosamond, C.R. Subramanian, “Parametric Duality and Fixed Parameter Tractability” manuscript 2001.Google Scholar
  7. 7.
    C. Bazgan, “Schémas d’approximation et complexité paramétrée,” apport de stage de DEA d’Informatique à Orsay,1995.Google Scholar
  8. 8.
    H. Bodlaender, R. Downey, M. Fellows, M. Hallett and H.T. Wareham, “Parameterized Complexity Analysis in Computational Biology,”Computer Applications in the Biosciences 11 (1995),49–57.Google Scholar
  9. 9.
    Leizhe Cai,?“The Complexity of Coloring Parameterized Graphs,” to appear in Discrete Applied Math. Google Scholar
  10. 10.
    M. Cesati and M. Di Ianni, “Parameterized Parallel Complexity,” Technical Report ECCC97-06,University of Trier,1997.Google Scholar
  11. 11.
    Liming Cai and D. Juedes, “Subexpone tial Parameterized Algorithms Collapse the W Hierarchy,” in:Proceedings of ICALP 2001,Crete,Greece,LNCS 2076 (2001).304MATHGoogle Scholar
  12. 12.
    M. Cosner, R. Jansen, B. Moret, L. Raubeson, L. Wang, T. Warnow and S. Wyman, “A New Fast Heuristic for Computing the Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and Synthetic Data,” manuscript,2000.Google Scholar
  13. 13.
    J. Chen, I.A. Kanj and W. Jia, “Vertex Cover:Further Observations and Fur-ther Improvements,”Proceedings of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’9),Lecture Notes in Computer Science 1665 (1999),313–324.MATHGoogle Scholar
  14. 14.
    Leizhe Cai and B. Schieber,“A Linear Time Algorithm for Computing the Inter-section of All Odd Cycles i a Graph,”Discrete Applied Math. 73 (1997),27–34.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Cesati and L. Trevisan, “On the Efficiency of Polynomial Time Approximation Schemes,”Information Processing Letters 64 (1997),165–171.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. Cesati and H.T. Wareham, “Parameterized Complexity Analysis in Robot Motio Planning,”Proceedings 25th IEEE Intl. Conf. on Systems, Man and Cy-bernetics: Volume 1, IEEE Press, Los Alamitos,CA (1995),880–885.Google Scholar
  17. 17.
    R.G. Downey and M.R. Fellows,Parameterized Complexity, Springer-Verlag, 1998.291,295,297Google Scholar
  18. 18.
    R. Downey and M. Fellows, “Parameterized Complexity After Almost Ten Years:Review and Open Questions,” in:Combinatorics, Computation and Logic, DMTCS’99 and CATS’99... Australia Computer Science Communicatio s, Springer-Verlag Singapore,vol.21 (1999),1–33.MathSciNetMATHGoogle Scholar
  19. 19.
    R.G. Downey, M.R. Fellows and U. Stege, “Parameterized Complexity:AFrame-work for Systematically Confronting Computational Intractability.” in:Contempo-rary Trends in Discrete Mathematics, (R. Graham, J. Kratochvíl, J. Nesetril and F. Roberts,eds.),Proceedings of the DIMACS-DIMATIA Workshop,Prague,1997, AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science... vol.49 (1999),49–99.Google Scholar
  20. 20.
    R.G. Downey, M. Fellows and U. Taylor, “The Parameterized Complexity of Rela-tional Database Queries a d an Improved Characterization of W[1],” in:Combina-torics, Complexity and Logic: Proceedings of DMTCS’96... Springer-Verlag (1997), 194–213.Google Scholar
  21. 21.
    F. Deh e, A. Rau-Chaplin, U. Stege and P. Taillon, “Solving Large FPT Problems on Coarse Grained Parallel Machines, manuscript,2001.Google Scholar
  22. 22.
    H. Fernau, “Remarks of Parameterized Enumeration,” manuscript,2001.Google Scholar
  23. 23.
    J. Flum and M. Grohe, “Describing Parameterized Complexity Classes,” manuscript,2001.Google Scholar
  24. 24.
    M. Fellows, C. McCarti, F. Rosamond and U. Stege, “Trees with Few and Many Leaves,” manuscript,full version of the paper:“Coordinatized kernels and catalytic reductions:An improved FPT algorithm for max leaf spanning tree and other problems,”Proceedings of the 20th FST TCS Conference... New Delhi,India,Lecture Notes in Computer Science vol.1974,Springer Verlag (2000),240–251.Google Scholar
  25. 25.
    M. Garey and D. Johnso.Computers and Intractability: A Guide to the Theory of NP-completeness W.H. Freeman,San Francisco,1979.Google Scholar
  26. 26.
    G. Guti and T. Kloks, “Kernels in Planar Digraphs,”?manuscript,2001.Google Scholar
  27. 27.
    M. Grohe, “Generalized Model-Checking Problems for First-Order Logic,”Proc. STACS 2001... Springer-Verlag LNCS vol.2001 (2001),12–26.MATHGoogle Scholar
  28. 28.
    M. Grohe, “The Parameterized Complexity of Database Queries,”Proc. PODS 2001... ACM Press (2001),82–92.Google Scholar
  29. 29.
    G. Gottlob, F. Scarcello and M. Sideri, “Fixed Parameter Complexity in AI and No monotonic Reasoning,”?to appear in The Artificial Intelligence Journal Co-fere ce version in:Proc. of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR ?9),vol.1730 of Lecture Notes in Artificial Intelligence (1999),1–18.Google Scholar
  30. 30.
    M. Hallett, G. Gonnett and U. Stege, “Vertex Cover Revisited:AHybrid Algorithm of Theory and Heuristic,”?manuscript,1998.Google Scholar
  31. 31.
    F. Hanglein and H. G. Mairson,“The Complexity of Type Inference for Higher-Order Typed Lambda Calculi.”I Proc. Symp. on Principles of Programming Languages (POPL) (1991),119–130.Google Scholar
  32. 32.
    S. Khanna and R. Motwani,“Towards a Syntactic Characterizatio of PTAS,” in: Proc. STOC 1996... ACM Press (1996),329–337.Google Scholar
  33. 33.
    S. Khot and V. Rama,‘Parameterized Complexity of Finding Subgraphs with Hereditary properties’, Proceedings of the Sixth Annual International Computing and Combinatorics Conference (COCOON 2000) July 2000, Sydney, Australia, Lecture Notes in Computer Science,Springer Verlag 1858 (2000) 137–147.MATHGoogle Scholar
  34. 34.
    O. Lichtenstein and A. Pneuli.“Checking That Finite-State Concurrents Programs Satisfy Their Linear Specification.” In: Proceedings of the 12th ACM Symposium on Principles of Programming Languages (1985), 97–107.Google Scholar
  35. 35.
    P. Moscato,“Controllability,Parameterized Complexity,and the Systematic Design of Evolutionary Algorithms,” manuscript, 2001 (http://www.densis.fee.unicamp.br/~moscato).
  36. 36.
    M. Mahajan and V. Rama,“Parameterizing Above Guaranteed Values:MaxSat and MaxCut,” J. Algorithms 31 (1999), 335–354.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    B. Moret, S. Wyma, D. Bader, T. Warnow and M. Yan,“A New Implementation and Detailed Study of Breakpoint Analysis,” manuscript, 2000.Google Scholar
  38. 38.
    R. Niedermeier,“Some Prospects for Efficient Fixed-Parameter Algorithms,” Proc. SOFSEM’98 Springer-Verlag LNCS 1521 (1998), 168–185.Google Scholar
  39. 39.
    A. Natanzon, R. Shamir and R. Sharan,“A Polynomial-Time Approximatio Algorithm for Minimum Fill-I,” Proc. ACM Symposium on the Theory of Computing (STOC’98),ACM Press (1998),41–47.Google Scholar
  40. 40.
    C. Papadimitriou and M. Yannakakis,“On the Complexity of Database Queries,” Proc. ACM Symp. on Principles of Database Systems (1997), 12–19.Google Scholar
  41. 41.
    U. Stege,“Resolving Conflicts in Problems in Computational Biochemistry,” Ph.D. dissertation, ETH, 2000.Google Scholar
  42. 42.
    M. Truszczynski,“On Computing Large and Small Stable Models,” to appear in Journal of Logic Programming.Google Scholar
  43. 43.
    V. Rama, “Parameterized Complexity,” in:Proceedings of the 7th National Semstm on Theoretical Computer Science, Chennai, India (1997), 1–18.Google Scholar
  44. 44.
    K. Weihe, “On the Differences Betwee Practical and Applied,” Dagstuhl Workshop on Experime tal Algorithmics, September 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Michael R. Fellows
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of Newcastle University DriveCallaghanAustralia

Personalised recommendations