Skip to main content

Baire Category and Nowhere Differentiability for Feasible Real Functions

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2223))

Included in the following conference series:

  • 1577 Accesses

Abstract

A notion of resource-bounded Baire category is developed for the class P C[0,1] of all polynomial-time computable real-valued functions on the unit interval. The meager subsets of P C[0,1] are characterized in terms of resource-bounded Banach-Mazur games. This characterization is used to prove that, in the sense of Baire category, almost every function in P C[0,1] is nowhere differentiable. This is a complexity-theoretic extension of the analogous classical result that Banach proved for the class C[0, 1] in 1931.

This research was supported in part by National Science Foundation Grants 9157382, 9610461, and 9988483.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In Proceedings of the 35th Annual IEEE Foundations of Computer Science Conference, pages 807–818, 1994.

    Google Scholar 

  2. K. Ambos-Spies. Resource-bounded genericity. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 162–181. IEEE Computer Society Press, 1995.

    Google Scholar 

  3. K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In Complexity, Logic, and Recursion Theory. Marcel Dekker, Inc., 1997.

    Google Scholar 

  4. K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential time. Theoretical Computer Science, 168:3–19, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Banach. Über die Baire’sche kategorie gewisser funktionenmengen. Studia Math., 3:174, 1931.

    MATH  Google Scholar 

  6. S. A. Fenner. Notions of resource-bounded category and genericity. In Proceedings of the 6th Annual IEEE Structure in Complexity Theory Conference, pages 196–212. IEEE Computer Society Press, 1991.

    Google Scholar 

  7. S. A. Fenner. Resource-bounded baire category: A stronger approach. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 162–181. IEEE Computer Society Press, 1995.

    Google Scholar 

  8. Kiyosi Itô, editor. Encyclopedic Dictionary of Mathematics. MIT Press, Cambridge, Mass., second edition, 1993.

    Google Scholar 

  9. Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.

    Google Scholar 

  10. L. R. Lisagor. The Banach-Mazur game. Math. USSR Sbornik, 38(2):201–216, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. H. Lutz. Category and Measure in Complexity Classes. PhD thesis, California Institute of Technology, 1987.

    Google Scholar 

  12. J. H. Lutz. Resouce-bounded Baire category and small circuits in exponential space. In Proceedings of the 2nd Annual Conference on Structure in Complexity Theory, pages 87–91. IEEE Computer Society Press, 1987.

    Google Scholar 

  13. J. H. Lutz. Category and meaure in complexity classes. SIAM Journal on Computing, 19(6):1100–1131, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. H. Lutz. The quantitative structure of exponential time. In Complexity Theory Retrospective II, pages 225–260. Springer-Verlag, 1997.

    Google Scholar 

  16. E. Mayordomo. Measuring in PSPACE. In Proceedings of the 7th International Meeting of Young Computer Scientists, pages 122–29, 1992.

    Google Scholar 

  17. E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. PhD thesis, Universitat Politécnica de Catalunya, 1994.

    Google Scholar 

  18. K. Mehlhorn. On the size of sets of computable functions. In Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, pages 190–196, 1973.

    Google Scholar 

  19. J. Myhill. A recursive function de.ned on a compact interval and having a continuous derivative that is not recursive. Michigan Math. Journal, 18:97–98, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. C. Oxtoby. Measure and Category. Springer-Verlag, Berlin, second edition, 1980.

    Google Scholar 

  21. M. Pour-El and I. Richards. Differentiability properties of computable functions-a summary. Acta Cybernetica, 4:123–125, 1978.

    MathSciNet  MATH  Google Scholar 

  22. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

    Google Scholar 

  23. M. Strauss. Measure on P: Strength of the notion. Information and Computation, 136(1):1–23, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Wang. Genericity, randomness, and polynomial-time approximations. SIAM Journal on Computing, 28(2):394–408, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Weierstrass. Mathematische Werke, volume II. Mayer and Muller, Berlin, 1894. 220

    Google Scholar 

  26. L. Wen. A nowhere differentiable continuous function. Amer. Math. Monthly, 107:450–453, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breutzmann, J.M., Juedes, D.W., Lutz, J.H. (2001). Baire Category and Nowhere Differentiability for Feasible Real Functions. In: Eades, P., Takaoka, T. (eds) Algorithms and Computation. ISAAC 2001. Lecture Notes in Computer Science, vol 2223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45678-3_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45678-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42985-2

  • Online ISBN: 978-3-540-45678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics