Baire Category and Nowhere Differentiability for Feasible Real Functions

  • Josef M. Breutzmann
  • David W. Juedes
  • Jack H. Lutz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2223)


A notion of resource-bounded Baire category is developed for the class P C[0,1] of all polynomial-time computable real-valued functions on the unit interval. The meager subsets of P C[0,1] are characterized in terms of resource-bounded Banach-Mazur games. This characterization is used to prove that, in the sense of Baire category, almost every function in P C[0,1] is nowhere differentiable. This is a complexity-theoretic extension of the analogous classical result that Banach proved for the class C[0, 1] in 1931.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In Proceedings of the 35th Annual IEEE Foundations of Computer Science Conference, pages 807–818, 1994.Google Scholar
  2. 2.
    K. Ambos-Spies. Resource-bounded genericity. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 162–181. IEEE Computer Society Press, 1995.Google Scholar
  3. 3.
    K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In Complexity, Logic, and Recursion Theory. Marcel Dekker, Inc., 1997.Google Scholar
  4. 4.
    K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential time. Theoretical Computer Science, 168:3–19, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Banach. Über die Baire’sche kategorie gewisser funktionenmengen. Studia Math., 3:174, 1931.zbMATHGoogle Scholar
  6. 6.
    S. A. Fenner. Notions of resource-bounded category and genericity. In Proceedings of the 6th Annual IEEE Structure in Complexity Theory Conference, pages 196–212. IEEE Computer Society Press, 1991.Google Scholar
  7. 7.
    S. A. Fenner. Resource-bounded baire category: A stronger approach. In Proceedings of the 10th Conference on Structure in Complexity Theory, pages 162–181. IEEE Computer Society Press, 1995.Google Scholar
  8. 8.
    Kiyosi Itô, editor. Encyclopedic Dictionary of Mathematics. MIT Press, Cambridge, Mass., second edition, 1993.Google Scholar
  9. 9.
    Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.Google Scholar
  10. 10.
    L. R. Lisagor. The Banach-Mazur game. Math. USSR Sbornik, 38(2):201–216, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. H. Lutz. Category and Measure in Complexity Classes. PhD thesis, California Institute of Technology, 1987.Google Scholar
  12. 12.
    J. H. Lutz. Resouce-bounded Baire category and small circuits in exponential space. In Proceedings of the 2nd Annual Conference on Structure in Complexity Theory, pages 87–91. IEEE Computer Society Press, 1987.Google Scholar
  13. 13.
    J. H. Lutz. Category and meaure in complexity classes. SIAM Journal on Computing, 19(6):1100–1131, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. H. Lutz. The quantitative structure of exponential time. In Complexity Theory Retrospective II, pages 225–260. Springer-Verlag, 1997.Google Scholar
  16. 16.
    E. Mayordomo. Measuring in PSPACE. In Proceedings of the 7th International Meeting of Young Computer Scientists, pages 122–29, 1992.Google Scholar
  17. 17.
    E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. PhD thesis, Universitat Politécnica de Catalunya, 1994.Google Scholar
  18. 18.
    K. Mehlhorn. On the size of sets of computable functions. In Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, pages 190–196, 1973.Google Scholar
  19. 19.
    J. Myhill. A recursive function de.ned on a compact interval and having a continuous derivative that is not recursive. Michigan Math. Journal, 18:97–98, 1971.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. C. Oxtoby. Measure and Category. Springer-Verlag, Berlin, second edition, 1980.Google Scholar
  21. 21.
    M. Pour-El and I. Richards. Differentiability properties of computable functions-a summary. Acta Cybernetica, 4:123–125, 1978.MathSciNetzbMATHGoogle Scholar
  22. 22.
    W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.Google Scholar
  23. 23.
    M. Strauss. Measure on P: Strength of the notion. Information and Computation, 136(1):1–23, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Y. Wang. Genericity, randomness, and polynomial-time approximations. SIAM Journal on Computing, 28(2):394–408, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    K. Weierstrass. Mathematische Werke, volume II. Mayer and Muller, Berlin, 1894. 220Google Scholar
  26. 26.
    L. Wen. A nowhere differentiable continuous function. Amer. Math. Monthly, 107:450–453, 2000.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Josef M. Breutzmann
    • 1
  • David W. Juedes
    • 2
  • Jack H. Lutz
    • 3
  1. 1.Dept. Math/CS/PhysicsWartburg CollegeWaverlyUSA
  2. 2.School of EE & CSOhio UniversityAthensUSA
  3. 3.Dept. of Comp. Sci.Iowa State UniversityAmesUSA

Personalised recommendations