Skip to main content

Image Kernels

  • Conference paper
  • First Online:
Pattern Recognition with Support Vector Machines (SVM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2388))

Included in the following conference series:

Abstract

In this paper we discuss the mathematical properties of a few kernels specifically constructed for dealing with image data in binary classification and novelty detection problems. First, we show that histogram intersection is a Mercer’s kernel. Then, we show that a similarity measure based on the notion of Hausdorff distance and directly applicable to raw images, though not a Mercer’s kernel, is a kernel for novelty detection. Both kernels appear to be well suited for building effective vision-based learning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barla, F. Odone, and A. Verri. Hausdorff kernel for 3D object acquisition and detection. In Proceedings of the European Conference on Computer Vision, 2002.

    Google Scholar 

  2. C. Campbell and K. P. Bennett. A linear programming approach to novelty detection. Advances in Neural Information Processing Systems, 13, 2001.

    Google Scholar 

  3. I. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-based image classification. IEEE Transactions on Neural Networks, special issue on Support Vectors, 1999.

    Google Scholar 

  4. R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. 2. Interscience, London UK, 1962.

    MATH  Google Scholar 

  5. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.

    Google Scholar 

  6. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Guodong, S. Li, and C. Kapluk. Face recognition by support vector machines. In Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pages 196–201, 2000.

    Google Scholar 

  8. B. Heisele, P. Ho,, and T. Poggio. Face recognition with support vector machines: global versus component-based approach. In Proceedings of the Eigth International Conference on Computer Vision, pages 688–694, 2001.

    Google Scholar 

  9. B. Heisele, T. Serre, M. Pontil, and T. Poggio. Component-based face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 657–662, 2001.

    Google Scholar 

  10. K. Jonsson, J. Matas, J. Kittler, and Y. Li. Learning support vectors for face verification and recognition. In Proc. IEEE International Conference on Automatic Face and Gesture Recognition, 2000.

    Google Scholar 

  11. C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive Approxive, 2:11–22, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images by components. IEEE Trans. Patt. Anal. Mach. Intell., 23:349–361, 2001.

    Article  Google Scholar 

  13. F. Odone, E. Trucco, and A. Verri. General purpose matching of grey level arbitrary images. In G. Sanniti di Baja C. Arcelli, L. P. Cordella, editor, 4th International Workshop on Visual Forms, Lecture Notes on Computer Science LNCS 2059, pages 573–582. Springer, 2001.

    Google Scholar 

  14. C. Papageorgiou and T. Poggio. A trainable system for object detection. International Journal of Computer Vision, 38(1):15–33, 2000.

    Article  MATH  Google Scholar 

  15. T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b, 2002.

    Google Scholar 

  16. M. Pontil and A. Verri. Support vector machines for 3d object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 637–646, 1998.

    Google Scholar 

  17. M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–32, 1991.

    Article  Google Scholar 

  18. M. Szummer and R. W. Picard. Indoor-outdoor image classification. In IEEE Intl Workshop on Content-based Access of Image and Video Databases, 1998.

    Google Scholar 

  19. V. Vapnik. The nature of statistical learning Theory. John Wiley and sons, New York, 1995.

    MATH  Google Scholar 

  20. V. Vapnik. Statistical learning theory. John Wiley and sons, New York, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barla, A., Franceschi, E., Odone, F., Verri, A. (2002). Image Kernels. In: Lee, SW., Verri, A. (eds) Pattern Recognition with Support Vector Machines. SVM 2002. Lecture Notes in Computer Science, vol 2388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45665-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45665-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44016-1

  • Online ISBN: 978-3-540-45665-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics