Advertisement

New European Schemes for Signature, Integrity and Encryption (NESSIE): A Status Report

  • Bart Preneel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2274)

Abstract

In February 2000 the NESSIE project has launched an open call for the next generation of cryptographic algorithms. These algorithms should offer a higher security and/or confidence level than existing ones, and should be better suited for the constraints of future hardware and software environments. The NESSIE project has received 39 algorithms, many of these from major players. In October 2001, the project completed the first phase of the evaluation and has selected 24 algorithms for the second phase. The goal is to recommend a complete portfolio of algorithms by the end of 2002. This article presents the status of the NESSIE project after two years.

Keywords

Smart Card Block Cipher Advance Encryption Standard Stream Cipher Cryptographic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Standard,” Springer-Verlag, 1993.Google Scholar
  2. 2.
    E. Biham, A. Shamir, “Differential fault analysis of secret key cryptosystems,” Advances in Cryptology, Proceedings Crypto’97, LNCS 1294, B. Kaliski, Ed., Springer-Verlag, 1997, pp. 513–525.Google Scholar
  3. 3.
    D. Boneh, R. A. DeMillo, R. J. Lipton, “On the importance of checking cryptographic protocols for faults,” Advances in Cryptology, Proceedings Eurocrypt’97, LNCS 1233, W. Fumy, Ed., Springer-Verlag, 1997, pp. 37–51.Google Scholar
  4. 5.
    J. Daemen, V. Rijmen, “AES proposal Rijndael,” September 3, 1999, available from http://www.nist.gov/aes.
  5. 6.
    FIPS 180-1, “Secure Hash Standard,” Federal Information Processing Standard (FIPS), Publication 180-1, National Institute of Standards and Technology, US Department of Commerce, Washington D.C., April 17, 1995.Google Scholar
  6. 7.
    FIPS XXX “Advanced Encryption Standard (AES),” Washington D.C.: NIST, US Department of Commerce, Draft, February 28, 2001.Google Scholar
  7. 8.
    E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, “RSA-OAEP is secure under the RSA assumption,” Advances in Cryptology, Proceedings Crypto’01, LNCS 2139, J. Kilian, Ed., Springer-Verlag, 2001, pp. 260–274.Google Scholar
  8. 9.
    P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,” Advances in Cryptology, Proceedings Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996, pp. 104–113.Google Scholar
  9. 10.
    P. Kocher, J. Jaffe, B. Jun, “Differential power analysis,” Advances in Cryptology, Proceedings Crypto’99, LNCS 1666, M.J. Wiener, Ed., Springer-Verlag, 1999, pp. 388–397.Google Scholar
  10. 11.
    J. Manger, “A chosen ciphertext attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as standardized in PKCS #1 v2.0,” Advances in Cryptology, Proceedings Crypto’01, LNCS 2139, J. Kilian, Ed., Springer-Verlag, 2001, pp. 230–238.Google Scholar
  11. 12.
    M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard,” Advances in Cryptology, Proceedings Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 1–11.Google Scholar
  12. 13.
    U.M. Maurer, “A universal statistical test for random bit generators,” Advances in Cryptology, Proceedings Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 409–420.Google Scholar
  13. 14.
    A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, “Handbook of Applied Cryptography,” CRC Press, 1997.Google Scholar
  14. 15.
  15. 16.
    NIST, AES Initiative, http://www.nist.gov/aes.
  16. 17.
    NIST, “SHA-256, SHA-384, SHA-512,” Washington D.C.: NIST, US Department of Commerce, Draft, 2000.Google Scholar
  17. 18.
    NIST, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” NIST Special Publication 800-22, National Institute of Standards and Technology, US Department of Commerce, Washington D.C., December 2000.Google Scholar
  18. 19.
    B. Preneel, B. Van Rompay, L. Granboulan, G. Martinet, S. Murphy, R. Shipsey, J. White, M. Dichtl, P. Serf, M. Schafheutle, E. Biham, O. Dunkelman, V. Furman, M. Ciet, J.-J. Quisquater, F. Sica, L. Knudsen, and H. Raddum, “Security Evaluation I,” NESSIE Deliverable D13, September 2001, available from [15].Google Scholar
  19. 20.
    B. Preneel, B. Van Rompay, L. Granboulan, G. Martinet, S. Murphy, R. Shipsey, J. White, M. Dichtl, P. Serf, M. Schafheutle, E. Biham, O. Dunkelman, V. Furman, M. Ciet, J.-J. Quisquater, F. Sica, L. Knudsen, and H. Raddum, “NESSIE Phase I: Selection of Primitives” NESSIE Report, September 2001, available from [15].Google Scholar
  20. 21.
    B. Preneel, B. Van Rompay, L. Granboulan, G. Martinet, M. Dichtl, M. Schafheutle, P. Serf, A. Bibliovicz, E. Biham, O. Dunkelman, M. Ciet, J.-J. Quisquater, and F. Sica, “Report on the Performance Evaluation of the NESSIE Candidates,” NESSIE Deliverable D14, October 2001, available from [15].Google Scholar
  21. 22.
    RIPE, “Integrity Primitives for Secure Information Systems. Final Report of RACE Integrity Primitives Evaluation (RIPE-RACE 1040),” LNCS 1007, A. Bosselaers, B. Preneel, Eds., Springer-Verlag, 1995.Google Scholar
  22. 23.
    V. Shoup, “OAEP reconsidered,” Advances in Cryptology, Proceedings Crypto’01, LNCS 2139, J. Kilian, Ed., Springer-Verlag, 2001, pp. 239–259.Google Scholar
  23. 24.
    V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption,” Version 2.0, September 17, 2001, available from http://www.shoup.net.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bart Preneel
    • 1
  1. 1.Dept. Electrical Engineering-ESATKatholieke Univ. LeuvenLeuven-HeverleeBelgium

Personalised recommendations