Skip to main content

High Frequency EPR Spectroscopy

  • Chapter
  • First Online:
High Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 595))

Abstract

EPR has traditionally been used in order to obtain structural information on transition metal compounds, with exciting frequencies in the range 9–35 GHz. The recent availability of high magnetic field has prompted the use of higher frequencies. In this contribution the advantages of using High-Field-High-Frequency EPR (HF EPR) experiments are reviewed. After a brief introduction aiming to recall the fundamentals of EPR spectroscopy, a short description of the experimental apparatus needed to perform HF EPR measurements is provided. The remaining sections report selected examples showing how much information can be obtained by HF EPR spectra. They range from individual ions with integer spin to molecular clusters. Particular attention is devoted to the so called Single Molecule Magnets, SMM, i.e. to molecular clusters which show slow relaxation of the magnetization at low temperature. This effect is due to Ising type magnetic anisotropy which has been efficiently monitored through HF EPR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abragam, B. Bleaney: ‘Electron Paramagnetic Resonance of Tansition Ions’ (Dover, New York, 1986)

    Google Scholar 

  2. A. Bencini, D. Gatteschi: ‘EPR of Exchange Coupled Systems’ (Springer-Verlag, Berlin, 1990)

    Google Scholar 

  3. J.R. Pilbrow: ‘Transition Ion Electron Paramagnetic Resonance’ (Clarendon Press, Oxford, 1990)

    Google Scholar 

  4. F.E. Mabbs, D. Collison: ‘Electron Paramagnetic Resonance of d Transition Metal Compounds’ (Elsevier, Amsterdam, 1992)

    Google Scholar 

  5. J.E. Wertz, J.R. Bolton: ‘Electron Spin Resonance: Elementary Theory and Practical Applications’ (McGraw Hill, New York, 1972)

    Google Scholar 

  6. A. Bencini, D. Gatteschi: ‘Inorganic Electronic Structure and Spectroscopy’, eds. E.I. Solomon, A.B.P. Lever (Wiley, New York, 1999), Vol. I, p. 93

    Google Scholar 

  7. P.J. Bratt et al.: J Phys. Chem. B 101, 9686 (1997)

    Article  Google Scholar 

  8. M.C.W. Evans, J.H.A. Nugent: ‘The Photosynthetic Reaction Center’, eds. J. Deisenhofer, J.R. Norris (Academic Press, San Diego, 1993), Vol. 1, p. 391

    Google Scholar 

  9. A.L. Barra et al.: Angewandte Chemie, International Edition in English 36, 2329 (1997)

    Article  Google Scholar 

  10. D.P. Goldberg et al.: J. Am. Chem. Soc. 119, 8722 (1997)

    Article  Google Scholar 

  11. P.J. Van Dam, A.A.K. Klaassen, E.J. Reijerse, W.R. Hagen: J. Magn. Reson. 130, 140 (1998)

    Article  ADS  Google Scholar 

  12. J. Telser, L.A. Pardi, J. Krzystek, L.C. Brunel: Inorg. Chem. 37, 5769 (1998)

    Article  Google Scholar 

  13. P.L.W. Tregenna-Piggott et al.: Inorg. Chem. 38, 5928 (1999)

    Article  Google Scholar 

  14. L.A. Pardi et al.: Inorg. Chem. 39, 159 (2000)

    Article  Google Scholar 

  15. J. Bendix, H.B. Gray, G. Golubkov, Z. Gross: J. Chem. Soc, Chem. Commun. 1957 (2000)

    Google Scholar 

  16. J. Mrozinski et al.: J. Mol. Struct. 559, 107 (2001)

    Article  ADS  Google Scholar 

  17. J. Limburg et al.: Inorg. Chem. 40, 1698 (2001)

    Article  Google Scholar 

  18. B.R. McGarvey: Transition Metal Chemistry 3, 89 (1966)

    Google Scholar 

  19. J.S. Griffith: ‘The Theory of Transition Metal Ions’ (Cambridge University Press, Cambridge 1961)

    MATH  Google Scholar 

  20. C.P. Poole: ‘Electron Spin Resonance, A Comprehensive Treatise on Experimental Techniques’, (Dover, Mineola, New York 1996)

    Google Scholar 

  21. J.C.G. Lesurf: ‘Millimetre-Wave Optics, Devices, and Systems’, (Dover, Bristol 1996)

    Google Scholar 

  22. K.A. Earle, D.E. Budil, J.H. Freed: Adv. Magn. Reson. and Opt. Reson. 19, 253 (1996)

    Article  Google Scholar 

  23. K.A. Earle, J.H. Freed: Appl. Magn. Reson. 16, 247 (1999)

    Article  Google Scholar 

  24. K.A. Earle, D.S. Tipikin, J.H. Freed: Rev. Sci. Instrum. 67, 2502 (1996)

    Article  ADS  Google Scholar 

  25. G.M. Smith, J.C.G. Lesurf, R.H. Mitchell, P.C. Riedi: Rev. Sci. Instrum. 69, 3924 (1998)

    Article  ADS  Google Scholar 

  26. M.R. Fuchs, T.F. Prisner, K. Mobius: Rev. Sci. Instrum. 70, 3681 (1999)

    Article  ADS  Google Scholar 

  27. J.H. Freed: Annual Rev. Phys. Chem. 51, 655 (2000)

    Article  ADS  Google Scholar 

  28. G. Annino et al.: Appl. Magn. Reson. 19, 495 (2000)

    Article  Google Scholar 

  29. G. Annino et al.: J. Magn. Reson. 143, 88 (2000)

    Article  ADS  Google Scholar 

  30. G. Annino et al.: Rev. Sci. Instrum. 70, 1787 (1999)

    Article  ADS  Google Scholar 

  31. G. Annino, M. Cassettari, I. Longo, M. Martinelli: Chem. Phys. Lett. 281, 306 (1997)

    Article  ADS  Google Scholar 

  32. G.M. Smith, E.J. Milton: International Journal of Remote Sensing 20, 2653 (1999)

    Article  ADS  Google Scholar 

  33. A.K. Hassan et al.: Appl. Magn. Reson. 16, 299 (1999)

    Article  Google Scholar 

  34. A.K. Hassan et al.: J. Magn. Reson. 142, 300 (2000)

    Article  ADS  Google Scholar 

  35. A.L. Barra et al.: Angewandte Chemie, International Edition in English 36, 2329 (1997)

    Article  Google Scholar 

  36. E. Rentschler et al.: Inorg. Chem. 35, 4427 (1996)

    Article  Google Scholar 

  37. D.P. Goldberg et al.: J. Am. Chem. Soc. 115, 5789 (1995)

    Article  Google Scholar 

  38. C.E. Dube et al.: J. Am. Chem. Soc. 121, 3537 (1999)

    Article  Google Scholar 

  39. W.H. Armstrong et al.: Abstracts of Papers of the Am. Chem. Soc. 220, 414-INOR (2000)

    Google Scholar 

  40. R.D. Britt: ‘Oxygenic Photosynthesis: The Light Reactions’, eds. D.R. Ort, C.F. Yocum (Kluwer Academic Publishers, Dordrecht 1996), p. 137

    Google Scholar 

  41. V.K. Yachandra, K. Sauer, M.P. Klein: Chem. Rev. 96, 2927 (1996)

    Article  Google Scholar 

  42. O. Horner et al.: J. Am. Chem. Soc. 120, 7924 (1998)

    Article  Google Scholar 

  43. C.E. Dube et al.: J. Am. Chem. Soc. 121, 3537 (1999)

    Article  Google Scholar 

  44. A.L. Barra: private communication

    Google Scholar 

  45. G. Christou, D. Gatteschi, D.N. Hendrickson, R. Sessoli: Mrs Bulletin 25, 66 (2000)

    Google Scholar 

  46. A. Caneschi et al.: J. Magn. Magn. Mater. 200, 182 (1999)

    Article  ADS  Google Scholar 

  47. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak: Nature (London) 365, 141 (1993)

    Article  ADS  Google Scholar 

  48. L. Thomas et al.: Nature (London) 383, 145 (1996)

    Article  ADS  Google Scholar 

  49. J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo: Phys. Rev. Lett. 76, 3830 (1996)

    Article  ADS  Google Scholar 

  50. W. Wernsdorfer, R. Sessoli: Science 284, 133 (1999)

    Article  ADS  Google Scholar 

  51. T. Lis: Acta Crystallog. B 36, 2042 (1980)

    Article  Google Scholar 

  52. A.L. Barra, D. Gatteschi, R. Sessoli: Phys. Rev. B-Condens. Matter 56, 8192 (1997)

    Article  ADS  Google Scholar 

  53. A. Abragam, B. Bleaney, ‘Electron Paramagnetic Resonance of Tansition Ions’, (Dover, New York, 1986)

    Google Scholar 

  54. C.J.H. Jacobsen, E. Pedersen, J. Villadsen, H. Weihe: Inorg. Chem. 32, 1216 (1993)

    Article  Google Scholar 

  55. A.L. Barra, D. Gatteschi, R. Sessoli: Phys. Rev. B-Condens. Matter 56, 8192 (1997)

    Article  ADS  Google Scholar 

  56. I. Mirebeau et al.: Phys. Rev. Lett. 83, 628 (1999)

    Article  ADS  Google Scholar 

  57. S. Hill et al.: Phys. Rev. Lett. 80, 2453 (1998)

    Article  ADS  Google Scholar 

  58. A.A. Mukhin et al.: Europhys. Lett. 44, 778 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  59. J. Villain, F. Hartman-Boutron, R. Sessoli, A. Rettori: Europhys. Lett. 27, 159 (1994)

    Article  ADS  Google Scholar 

  60. K. Wieghardt, K. Pohl, I. Jibril, G. Huttner: Angewandte Chemie, International Edition in English 23, 77 (1984)

    Article  Google Scholar 

  61. C. Delfs et al.: Inorg. Chem. 32, 3099 (1993)

    Article  Google Scholar 

  62. A.L. Barra et al.: Europhys. Lett. 35, 133 (1996)

    Article  ADS  Google Scholar 

  63. A.L. Barra, D. Gatteschi, R. Sessoli: Chemistry-a European Journal 6, 1608 (2000)

    Article  Google Scholar 

  64. R. Caciuffo et al.: Phys. Rev. Lett. 81, 4744 (1998)

    Article  ADS  Google Scholar 

  65. K. Wieghardt, K. Pohl, I. Jibril, G. Huttner: Angewandte Chemie, International Edition in English 23, 77 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gatteschi, D. (2002). High Frequency EPR Spectroscopy. In: Berthier, C., Lévy, L.P., Martinez, G. (eds) High Magnetic Fields. Lecture Notes in Physics, vol 595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45649-X_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45649-X_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43979-0

  • Online ISBN: 978-3-540-45649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics