Skip to main content

Magnetic and Crystalline Nanostructures in Ferrofluids as Probed by Small Angle Neutron Scattering

  • Chapter
  • First Online:
Ferrofluids

Part of the book series: Lecture Notes in Physics ((LNP,volume 594))

Abstract

We present a newly developedtec hnique of nuclear andmagnetic contrast variation by using polarisedneutrons in Small Angle Neutron Scattering (SANSPOL) which allows density, concentration and magnetisation fluctuations in magnetic liquids to be analysedsim ultaneously. DilutedF errofluids basedon different magnetic materials (Co, Magnetite, Ba-ferrite) andstabilizedb y charges or surfactants in different carrier liquids have been investigated. In such polydisperse systems several constituents of similar sizes have been identified by this technique: Magnetic core-shell composites, magnetic aggregates and free surfactants. The corresponding size distributions, compositions and magnetic moments have been determined. In more concentrated Co-FF the nature of field induced particle arrangements has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Loeffler, W. Wagner, H. Van Swygenhoven, & A. Wiedenmann, Nanostruct. Mat., 9 (1997), 331–334.

    Article  Google Scholar 

  2. A. Wiedenmann, J. Appl. Cryst., 30 (1997), 580–585.

    Article  Google Scholar 

  3. J._F. Loeffler, H. B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann Materials Science and Engineering A, 304–306,31 (2001), 1050–1054.

    Article  Google Scholar 

  4. A. Michels, J. Weissmüller, A. Wiedenmann, J.S. Pedersen, J.G. Barker Philosoph. Magazine Letters 80 (2000), 785–792.

    Article  ADS  Google Scholar 

  5. A. Wiedenmann, U. Lembke, A Hoell, R. Müller, & W. Schüppel Nanostruct. Mat., 12 (1999), 601–604.

    Article  Google Scholar 

  6. J. Kohlbrecher, A. Wiedenmann, H. Wollenberger, Z. Physik, 104 (1997), 1–4.

    ADS  Google Scholar 

  7. A. Heinemann, H. Hermann, A. Wiedenmann, N. Mattern, K. Wetzig J. Applied Cryst. 33 (2000), 1386–1392.

    Article  Google Scholar 

  8. S.W. Charles, JMMM (2002).

    Google Scholar 

  9. P.P. Gravina et al., JMMM (2002).

    Google Scholar 

  10. E. Dubois et.al, Langmuir 13 (2000), 5617.

    Article  Google Scholar 

  11. G._A. van Ewijk, PhD Thesis Utrecht (2001).

    Google Scholar 

  12. B. Huke et al., Phys. Rev. E 62 (2000), 6875.

    ADS  Google Scholar 

  13. S. Odenbach, K. Raj, Magnetohydrodynamics 36 (2000), 379–386.

    Article  Google Scholar 

  14. B._U. Felderhof Phys. Rev. E 62 (2000), 3848.

    ADS  MathSciNet  Google Scholar 

  15. J.P. Embs et al. Phys. Rev. E (2001), preprint

    Google Scholar 

  16. E. Dubois, V. Cabuil, F. Boué, R. Perzyski, J.Phys. Chem. 111 (1999), 7147–7160.

    Article  Google Scholar 

  17. F. Cousin, V. Cabuil, Prog. Colloid Polym. Sci. 2000), 77–83.

    Google Scholar 

  18. G. Kostorz in Treatease on Materials Science and Technology, Acad. Press (1979) ed. G. Kostorz, 227–290.

    Google Scholar 

  19. J.K. Percus, G.J. Yevick Phys. Rev 110 (1959), 1–13.

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Brunner-Popela, O. Glatter J. Appl. Cryst 30 (1997), 431–442.

    Article  Google Scholar 

  21. J.S. Pedersen J. Appl. Cryst. 27 (1994), 595–608.

    Article  Google Scholar 

  22. R.M. Moon, T. Riste, & W.C. Koehler, Phys. Rev. (1969) 181, 920–931.

    Article  ADS  Google Scholar 

  23. R. Pynn, & J. B. Hayter. Phys. Rev. Letters, 51, 710–713.

    Google Scholar 

  24. A. Wiedenmann, Mat. Science Forum, 312–314 (1999) 315. J. Metastable and Nanocrystalline Materials, 2–6 (1999), 315–324.

    Article  Google Scholar 

  25. A. Wiedenmann, Physica B 297 (2001), 226–233.

    Article  ADS  Google Scholar 

  26. R. P. May and K. Ibel and J. Haas, J. Appl. Cryst., 15 (1982), 15–19.

    Article  Google Scholar 

  27. R. Stegmann, E. Manakova, M. Rössle, H. Heumann, S. Axmann, A. Plückthun, T. Hermann, R. May, A. Wiedenmann. J. Structural Biology 121 (1998), 30–30.

    Article  Google Scholar 

  28. A. Wiedenmann, J. Appl. Cryst. 33 (2000), 428–432.

    Article  Google Scholar 

  29. U. Keiderling & A. Wiedenmann, A. Physica B, 213&214 (1995). 895–897.

    Article  Google Scholar 

  30. T. Keller, T. Krist, A. Danzig, U. Keiderling, F. Mezei, A. Wiedenmann, J. Nuclear Instruments A451 (2000), 474–479.

    Article  ADS  Google Scholar 

  31. R. Müller et al, J. Magn. Magn. Mat. 201 (1999), 34.

    Article  ADS  Google Scholar 

  32. A. Hoell, A. Wiedenmann, U. Lembke, Physica B276–278 (2000), 886–887.

    Google Scholar 

  33. A. Wiedenmann, Magnetohydrodynamics 37 (2001), 236–242.

    ADS  Google Scholar 

  34. A. Wiedenmann, A. Hoell, M. Kammel, JMMM (2002) in press.

    Google Scholar 

  35. J. B. Hayter. J. Appl. Cryst., 21 (1988), 737–742.

    Article  Google Scholar 

  36. M. Kammel, A. Hoell, A. Wiedenmann, Scripta Materialia 44 (2001), 2341–2345.

    Article  Google Scholar 

  37. M. Kammel, A. Wiedenmann, A. Hoell, JMMM (2002) in press.

    Google Scholar 

  38. A. Heinemann, Tatchev, A. Hoell, A. Wiedenmann J.Appl. Cryst.to be published

    Google Scholar 

  39. A. Hoell, M. Kammel, A. Wiedenmann, JMMM (2002) in press

    Google Scholar 

  40. A. Hoell, R. Müller, A. Wiedenmann, W. Gawalek, JMMM (2002) in press.

    Google Scholar 

  41. N. Buske, DE patent.197 58 350 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiedenmann, A. (2002). Magnetic and Crystalline Nanostructures in Ferrofluids as Probed by Small Angle Neutron Scattering. In: Odenbach, S. (eds) Ferrofluids. Lecture Notes in Physics, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45646-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45646-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43978-3

  • Online ISBN: 978-3-540-45646-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics