Skip to main content

On Convergence of a Neural Network Model Computing MSC

  • Conference paper
  • First Online:
  • 1487 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2275))

Abstract

A self-organizing neural network model that computes the centre and radius of the minimum circle spanning a given finite planar set is proposed by Datta [8]. Here we mathematically prove that the model converges to the desired centre of the minimum spanning circle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Hearn and J. Vijay. Efficient algorithms for the (weighted) minimum circle problem. Operation Research 30 (1982) 777–795.

    MATH  MathSciNet  Google Scholar 

  2. R. C. Melville. An implementation study of two algorithms for the minimum spanning circle problem. Computational Geomerty (G. T. Toussaint, Ed.), North-Holland, (1985) 267–294.

    Google Scholar 

  3. N. Megiddo. Linear time algorithms for linear programming in R3 and related problems. SIAM J. of Computing 12 (1983) 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Skyum. A simple algorithm for smallest enclosing circle. Infor. Proc. Letters 37 (1991) 121–125.

    Google Scholar 

  5. R. D. Smallwood. Minimax detection station placement. Operation Research 13 (1965) 636–646.

    Google Scholar 

  6. J. J. Sylvester. A question in the geometry of situation. Quart. J. Math. 1 (1857) 79–-.

    Google Scholar 

  7. G. Toussaint and B. Bhattacharya. On geometric algorithms that use the farthestpoint Voronoi diagram. Tech. Rept. SOCS-81.3, McGill Univ. School of Computer Sci., 1981.

    Google Scholar 

  8. A. Datta. Computing minimum spanning circle by self-organization. Neurocomputing 13 (1996) 75–83.

    Article  Google Scholar 

  9. K. Mehrotra, C. K. Mohan and S. Ranka. Elements of Artificial Neural Networks,MIT Press, 1997.

    Google Scholar 

  10. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction, New York: Springer-Verlag, 1985.

    Google Scholar 

  11. M. Shamos. Problems in Computational Geometry, Carnegie-Mellon Univ., 1977.

    Google Scholar 

  12. T. M. Apostol. Mathematical Analysis, second edition, Addison-Wesley, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parui, S.K., Datta, A. (2002). On Convergence of a Neural Network Model Computing MSC. In: Pal, N.R., Sugeno, M. (eds) Advances in Soft Computing — AFSS 2002. AFSS 2002. Lecture Notes in Computer Science(), vol 2275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45631-7_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45631-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43150-3

  • Online ISBN: 978-3-540-45631-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics