Advertisement

Reasoning with Expressive Description Logics: Theory and Practice

  • Ian Horrocks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2392)

Abstract

Description Logics are a family of class based knowledge representation formalisms characterised by the use of various constructors to build complex classes from simpler ones, and by an emphasis on the provision of sound, complete and (empirically) tractable reasoning services. They have a wide range of applications, but their use as ontology languages has been highlighted by the recent explosion of interest in the “Semantic Web”, where ontologies are set to play a key role. DAML+OIL is a description logic based ontology language specifically designed for use on the web. The logical basis of the language means that reasoning services can be provided, both to support ontology design and to make DAML+OIL described web resources more accessible to automated processes.

Keywords

Description Logic Ontology Language Inverse Property Reasoning Service Datatype Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems, or: Making KRIS get a move on. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’92), pages 270–281, 1992.Google Scholar
  2. 2.
    F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management, 4:109–132, 1994.Google Scholar
  3. 3.
    F. Baader and P. Hanschke. A schema for integrating concrete domains into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 452–457, 1991.Google Scholar
  4. 4.
    F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in description logics. J. of Logic and Computation, 9(3):411–447, 1999.zbMATHCrossRefGoogle Scholar
  5. 5.
    A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experimental and Theoretical Results. PhD thesis, University of Oregon, 1995.Google Scholar
  6. 6.
    S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontology editor for the semantic web. In Proc. of the Joint German/Austrian Conf. on Artificial Intelligence (KI 2001), number 2174 in Lecture Notes in Artificial Intelligence, pages 396–408. Springer-Verlag, 2001.Google Scholar
  7. 7.
    T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.Google Scholar
  8. 8.
    P. Blackburn and J. Seligman. Hybrid languages. J. of Logic, Language and Information, 4:251–272, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for sub-sumption in the CLASSIC description logic. J. of Artificial Intelligence Research, 1:277–308, 1994.zbMATHGoogle Scholar
  10. 10.
    S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in description logics. In Proc. of the 8th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’2002), pages 203–214, 2002.Google Scholar
  11. 11.
    S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics — what does it buy me? In Proc. of KI-2001 Workshop on Applications of Description Logics (KIDLWS’01), volume 44 of CEUR (http://ceur-ws.org/), 2001.
  12. 12.
    P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive description logics: Preliminary report.In Proc. of the 1995 Description Logic Workshop (DL’95), pages 131–139, 1995.Google Scholar
  13. 13.
    D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.Google Scholar
  14. 14.
    D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views in description logics. In Proc. of the 1999 Description Logic Workshop (DL’99), pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.
  15. 15.
    D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description logic framework for information integration. In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.Google Scholar
  16. 16.
    D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information integration: Conceptual modeling and reasoning support. In Proc. of the 6th Int. Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.Google Scholar
  17. 17.
    S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein, and S. Melnik. The semantic web: The roles of XML and RDF. IEEE Internet Computing, 4(5), 2000.Google Scholar
  18. 18.
    F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages.In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’ 91), pages 151–162. Morgan Kaufmann, Los Altos, 1991.Google Scholar
  19. 19.
    F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. Information and Computation, 134:1–58, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a nutshell. In R. Dieng, editor, Proc. of the 12th European Workshop on Knowledge Acquisition, Modeling, and Management (EKAW’00), number 1937 in Lecture Notes in Artificial Intelligence, pages 1–16. Springer-Verlag, 2000.Google Scholar
  21. 21.
    D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider. OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.CrossRefGoogle Scholar
  22. 22.
    E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97), pages 306–317. IEEE Computer Society Press, 1997.Google Scholar
  23. 23.
    V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), 2001.Google Scholar
  24. 24.
    V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.Google Scholar
  25. 25.
    J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An empirical analysis of terminological representation systems. Artificial Intelligence, 68:367–397, 1994.zbMATHCrossRefGoogle Scholar
  26. 26.
    J. Hendler and D. L. McGuinness. The darpa agent markup language”. IEEE Intelligent Systems, 15(6):67–73, 2000.CrossRefGoogle Scholar
  27. 27.
    B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91), pages 335–346, 1991.Google Scholar
  28. 28.
    I. Horrocks. The FaCT system. In H. de Swart, editor, Proc. of the 2nd Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397 of Lecture Notes in Artificial Intelligence, pages 307–312. Springer-Verlag, 1998.Google Scholar
  29. 29.
    I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’ 98), pages 636–647, 1998.Google Scholar
  30. 30.
    I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption. J. of Logic and Computation, 9(3):267–293, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of DAML+OIL: An ontology language for the semantic web. In Proc. of the 18th Nat. Conf. on Artificial Intelligence (AAAI 2002), 2002. To appear.Google Scholar
  32. 32.
    I. Horrocks and U. Sattler. Ontology reasoning in the \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q}{\text{(D)}} \) description logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). Morgan Kaufmann, Los Altos, 2001.Google Scholar
  33. 33.
    I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-Verlag, 1999.Google Scholar
  34. 34.
    I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive description logics. J. of the Interest Group in Pure and Applied Logic, 8(3):239–264, 2000.zbMATHMathSciNetGoogle Scholar
  35. 35.
    I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic \( \mathcal{S}\mathcal{H}\mathcal{I}\mathcal{Q} \). In Proc. of the 17th Int. Conf. on Automated Deduction (CADE 2000), number 1831 in Lecture Notes in Artificial Intelligence, pages 482–496. Springer-Verlag, 2000.Google Scholar
  36. 36.
    I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 399–404, 2000.Google Scholar
  37. 37.
    I. Horrocks, S. Tessaris, U. Sattler, and S. Tobies. How to decide query containment under constraints using a description logic.In Proc. of the 7th Int. Workshop on Knowledge Representation meets Databases (KRDB 2000). CEUR (http://ceur-ws.org/), 2000.
  38. 38.
    I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’2000), pages 285–296, 2000.Google Scholar
  39. 39.
    R. Küsters. Non-Standard Inferences in Description Logics, volume 2100 of Lecture Notes in Artificial Intelligence. Springer Verlag, 2001.Google Scholar
  40. 40.
    D. L. McGuinness. Ontological issues for knowledge-enhanced search. In Proc. of FOIS, Frontiers in Artificial Intelligence and Applications. IOS-press, 1998.Google Scholar
  41. 41.
    D. L. McGuinness. Ontologies for electronic commerce. In Proc. of the AAAI’ 99 Artificial Intelligence for Electronic Commerce Workshop, 1999.Google Scholar
  42. 42.
    D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera ontology environment. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), 2000.Google Scholar
  43. 43.
    D. L. McGuinness and J. R. Wright. An industrial strength description logic-based configuration platform. IEEE Intelligent Systems, pages 69–77, 1998.Google Scholar
  44. 44.
    S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems, 16(2):46–53, March/April 2001.Google Scholar
  45. 45.
    B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence, 43:235–249, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. J. of Automated Reasoning, 4:69–100, 1988.MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. F. Patel-Schneider. DLP system description. In Proc. of the 1998 Description Logic Workshop (DL’98), pages 87–89. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.
  48. 48.
    P. F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Workshop (DL’99), pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.
  49. 49.
    M.-C. Rousset. Backward reasoning in ABoxes for query answering. In Proc. of the 1999 Description Logic Workshop (DL’99), pages 18–22. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.
  50. 50.
    P.-H. Speel, F. van Raalte, P. E. van der Vet, and N. J. I. Mars. Runtime and memory usage performance of description logics. In G. Ellis, R. A. Levinson, A. Fall, and V. Dahl, editors, Knowledge Retrieval, Use and Storage for Efficiency: Proc. of the 1st Int. KRUSE Symposium, pages 13–27, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ian Horrocks
    • 1
  1. 1.Department of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations