Skip to main content

Ion homeostasis in Saccharomyces cerevisiae under NaCl stress

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 1))

Abstract

An essential process associated with salt stress tolerance in S. cerevisiae is the ability to maintain intracellular ion homeostasis. The strategies for the maintenance of a high internal K+/Na+ ratio despite high extracellular Na+ concentrations involve the concerted action of plasma membrane transport systems as well as intracellular compartmentalization of Na+, mainly in the prevacuole. The present review discusses the systems, which are most critical in determining K+/Na+ homeostasis, emphasizing recent progress in our understanding of how cation transport systems are regulated to maintain a functional intracellular ion environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S, Martinez-Ripoll M, Blundell TL, Serrano R (2000) X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 295:927–938

    PubMed  CAS  Google Scholar 

  • Alepuz PM, Cunningham KW, Estruch F (1997) Glucose reression affects ion homeostasis in yeast through regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98

    PubMed  CAS  Google Scholar 

  • Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase. J Exp Biol 203:155–160

    PubMed  CAS  Google Scholar 

  • Aniento F, Gu F, Parton RG, Gruenberg J (1996) An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 133:29–41

    PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over-expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Aramburu J, Rao A, Klee CB (2000) Calcineurin: from structure to function. Curr Top Cell Regul 36:237–295

    PubMed  CAS  Google Scholar 

  • Auer M, Scarborough GA, Kuhlbrandt W (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392:840–843

    PubMed  CAS  Google Scholar 

  • Bagnat M, Chang A, Simons K (2001) Plasma membrane proton ATPase ma1p requires raft association for surface delivery in yeast. Mol Biol Cell 12:4129–4138

    PubMed  CAS  Google Scholar 

  • Bagnat M, Keränen S, Shevchenko A, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259

    PubMed  CAS  Google Scholar 

  • Ballesteros E, Blumwald E, Donaire JP, Belver P (1997) Na+/H+ antiport activity in tono-plast vesicles isolated from sunflower induced by NaCl stress. Physiol Plant 99:328–334

    CAS  Google Scholar 

  • Banuelos MA, Quintero FJ, Rodriguez-Navarro A (1995) Functional expression of the ENA1(PMR2)-ATPase of Saccharomyces cerevisiae in Schizosaccharomyces pombe. Biochim Biophys Acta 1229:233–238

    PubMed  Google Scholar 

  • Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet J-L, Potier S (1998) The NHA1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144:2749–2758

    PubMed  CAS  Google Scholar 

  • Barkla BJ, Zingarelli L, Blumwald E, Smith AC (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryan-themum crystallinum. Physiol Plant 109:549–556

    CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    PubMed  CAS  Google Scholar 

  • Bellinger Y, Larher F (1990) Nutritional aspects of salt tolerance of the yeast Saccharomyces cerevisiae. C R Acad Sci Paris 310:351–356

    CAS  Google Scholar 

  • Benito B, Portillo F, Lagunas RI (1992) In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation. Identification of the regulatory domain that controls activation. FEBS Lett. 300:271–274

    PubMed  CAS  Google Scholar 

  • Benito B, Quintero FJ, Rodriguez-Navarro A (1997) Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi. Biochim Biophys Acta 1328:214–226

    PubMed  CAS  Google Scholar 

  • Bertl A, Slayman D, Gradmann D (1993) Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. J. Membr. Biol. 132:183–199

    PubMed  CAS  Google Scholar 

  • Bidwai AP, Reed CJ, Glover CVC (1995) Cloning and disruption of CKB1, the gene encoding the 38-kDa beta subunit of Saccharomyces cerevisiae caseine kinase II (CKII). J Biol Chem. 270:10395–10404

    PubMed  CAS  Google Scholar 

  • Bihler H, Gaber RF, Slayman CL, Bertl A (1999) The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current. FEBS Lett 447:115–120

    PubMed  CAS  Google Scholar 

  • Bihler H, Slayman CL, Bertl A (1998) NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 432:59–64

    PubMed  CAS  Google Scholar 

  • Bihler H, Slayman CL, Bertl A (2002) Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta 1558:109–118

    PubMed  CAS  Google Scholar 

  • Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the baso-lateral PDZ protein Scribble. Nature 403:676–680

    PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1993) Tolerance of fungi to NaCl. Marcell Dekker, New York

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131:2475S–2485S

    PubMed  CAS  Google Scholar 

  • Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294

    PubMed  CAS  Google Scholar 

  • Braley R, Piper PW (1997) The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett 418:123–126

    PubMed  CAS  Google Scholar 

  • Brennwald P, Kearns B, Champion K, Keranen S, Bankaitis V, Novick P (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79:245–258

    PubMed  CAS  Google Scholar 

  • Camacho M, Ramos J, Rodriguéz-Navarro A (1981) Potassium requirement of Saccharomyces cerevisiae. Curr Microbiol 6:295–299

    CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    PubMed  CAS  Google Scholar 

  • Chang A, Fink GR (1995) Targeting of the yeast plasma membrane [H+]ATPase: a novel gene AST1 prevents mislocalization of mutant ATPase to the vacuole. J Cell Biol 128:39–49

    PubMed  CAS  Google Scholar 

  • Chang A, Slayman CW (1991) Maturation of yeast plasma membrane [H+] ATPase involves phosphorylation during intracellular transport. J Cell Biol 115:289–295

    PubMed  CAS  Google Scholar 

  • Chapieaux E, Vignais M-L, Sentenac A, Goffeau A (1989) The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J Biol Chem 264:7437–7446

    Google Scholar 

  • Clotet J, Gari E, Aldea M, Arino J (1999) The yeast ser/thr phosphatases sit4 and ppz1 play opposite roles in regulation of the cell cycle. Mol Cell Biol 19:2408–2415

    PubMed  CAS  Google Scholar 

  • Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713

    PubMed  CAS  Google Scholar 

  • Cox KH, Pinchack AB, Cooper TG (1999) Genome-wide transcriptional analysis in S. cerevisiae by mini-array membrane hybridization. Yeast 15:703–713

    PubMed  CAS  Google Scholar 

  • Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–33444

    PubMed  CAS  Google Scholar 

  • Cunningham KW, Fink GR (1994) Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124:351–363

    PubMed  CAS  Google Scholar 

  • Cyert MS (2001) Regulation of nuclear localization during signaling. J Biol Chem 276:20805–20808

    PubMed  CAS  Google Scholar 

  • Cyert MS, Kunisawa R, Kaim D, Thorner J (1991) Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmoduline regulated phosphoprotein phosphatase. Proc Natl Acad Sci USA 88:7376–7380

    PubMed  CAS  Google Scholar 

  • Darley CP, van Wuytswinkel OC, van der Woude K, Mager WH, de Boer AHA (2000) Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Biochem J 351:241–249

    PubMed  CAS  Google Scholar 

  • de Haro C, Mendez R, Santoyo J (1996) The eIF-2alpha kinases and the control of protein synthesis. FASEB J 10:1378–1387

    PubMed  Google Scholar 

  • de Jesus Ferreira MC, Bao X, Laize V, Hohmann S (2001) Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature. Curr Genet 40:21–39

    Google Scholar 

  • De Lorenzo C, Mechler B, Bryant PJ (1999) What is Drosophila telling us about cancer? Canc Metastas Rev 18:295–311

    Google Scholar 

  • de Nadal E, Calero F, Ramos J, Arino J (1999) Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance. J Bacteriol 181:6456–6462

    PubMed  Google Scholar 

  • de Nadal E, Clotet J, Posas F, Serrano R, Gomez N, Arino J (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci USA 95:7357–7362

    PubMed  Google Scholar 

  • De Vit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    Google Scholar 

  • Denis V, Cyert MS (2002) Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by at TRP channel homologue. J Cell Biol 156:29–34

    PubMed  CAS  Google Scholar 

  • DeWitt ND, Tourinho dos Santos CF, Allen KE, Slayman CW (1998) Phosphorylation region of the yeast plasma-membrane H+-ATPase. Role in protein folding and biogenesis. J Biol Chem. 273:21744–21751

    PubMed  CAS  Google Scholar 

  • Dichtl B, Stevens A, Tollervey D (1997) Lithium toxicity in yeast is due to inhibition of RNA processing enzymes. EMBO J 16:7184–7195

    PubMed  CAS  Google Scholar 

  • Drillen R, Lacroute F (1972) Ureiodosuccinic acid uptake in yeast and some aspects of its regulation. J Bacteriol 109:203–208

    Google Scholar 

  • Dunbar LA, Caplan MJ (2001) Ion pumps in polarized cells: sorting and regulation of the Na+, K+-and H+, K+-ATPases. J Biol Chem 276:29617–19620

    PubMed  CAS  Google Scholar 

  • Eraso P, Portillo F (1994) Molecular mechanism of regulation of yeast plasma membrane H+-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem 269:10393–10399

    PubMed  CAS  Google Scholar 

  • Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W, Francois A, Goffeau A, Ghislain M (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072

    PubMed  CAS  Google Scholar 

  • Fairman C, Zhou X-L, Kung C (1999) Potassium uptake through the TOK1 K+ channel in the budding yeast. J Membr Biol 168:149–157

    PubMed  CAS  Google Scholar 

  • Ferrando A, Kron SJ, Rios G, Fink GF, Serrano R (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolreance gene HAL3. Mol Cell Biol 15:5470–5481

    PubMed  CAS  Google Scholar 

  • Ferreira T, Mason AB, Slayman CW (2001) The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J Biol Chem 276:29613–29616

    PubMed  CAS  Google Scholar 

  • Finger FP, Novick P (1999) Spatial regulation of exocytosis: Lesson from yeast. J Cell Biol 142:609-612

    Google Scholar 

  • Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S (2000) Colour-enhancing protein In blue petals. Spectacular morning glory rely on a behind-the scenes proton exchanger. Science 407:581

    CAS  Google Scholar 

  • Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    PubMed  CAS  Google Scholar 

  • Ganster RW, McCartney RR, Schmidt MC (1998) Identification of a calcineurin independent Pathway required for sodium ion stress response in Saccharomyces cerevisiae. Genetics 150:31–42

    PubMed  CAS  Google Scholar 

  • Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236:363–368

    PubMed  CAS  Google Scholar 

  • Garcia-Gimeno AM, Struhl K (2000) Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to Stress. Mol Cell Biol 20:4340–4349

    PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis Thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification In yeast. Proc Natl Acad Sci USA 96:1480–1485

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Yuan DS, Klausner RD, Fink GR (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci USA 95:4046–4050

    PubMed  CAS  Google Scholar 

  • Glover CVC (1998) On the physiological role of casein kinase II in Saccharomyces cere-Visiae. ProgrNucl Acid Res Mol Biol 59:95–133

    CAS  Google Scholar 

  • Gläser H-U, Thomas D, Gaxiola R, Montrichard F, Surdin-Kerjan Y, Serrano R (1993) Salt Tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative Phosphatase gene. EMBO J 12:3105–3110

    PubMed  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049

    PubMed  CAS  Google Scholar 

  • Gomez MJ, Luyten K, Ramos J (1996) The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 135:157–160

    PubMed  CAS  Google Scholar 

  • Gong X, Chang A (2001) A mutant plasma membrane ATPase, Pma1-10, is defective in Stability at the yeast cell surface. Proc Natl Acad Sci USA 98:9104–9109

    PubMed  CAS  Google Scholar 

  • Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H+-ATPase by protein kinases belonging to a family dedicated to activation of plasma Membrane transporters. Mol Cell Biol 20:7654–7661

    PubMed  CAS  Google Scholar 

  • Goossens A, Dever TE, Pascual-Ahuir A, Serrano RT (2001) The protein kinase Gcn2p Mediates sodium toxicity in yeast. J Biol Chem 276:30753–30760

    PubMed  CAS  Google Scholar 

  • Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P (2000) Protein complexes in Transport vesicle targeting. Cell Biol 10:251–255

    CAS  Google Scholar 

  • Haro R, Banuelos MA, Quintero FJ, Rubio F, Rodriguez-Navarro A (1993) Genetic basis of Sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant 89:868–874

    CAS  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguéz-Navarro A (1991) A novel P-type ATPase from yeast Involved in sodium transport. FEBS Lett 291:189–191

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses To high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272:21661–21664

    PubMed  CAS  Google Scholar 

  • Hirata D, Harada S-I, Namba H, Miyakawa T (1995) Adaptation to high salt stress in Saccharomyces cerevisiae ir regulated by Ca2+/calmodulin dependent phosphoprotein Phosphatase (calcineurin) and cAMP-dependent protein kinase. Mol Gen Genet 249:257–264

    PubMed  CAS  Google Scholar 

  • Hirayama T, Maeda T, Saito H, Shinozaki K (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) gnenes of Saccharomyces cerevisiae. Mol Gen Genet 249:127–138

    PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeast. Microbiol Mol Biol Rev 66:300–372

    PubMed  CAS  Google Scholar 

  • Hubbard EJ, Jiang R, Carlson M (1994) Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae. Mol Cell Biol 14:1972–1978

    PubMed  CAS  Google Scholar 

  • Iwaki T, Higashida Y, Tsuji H, Tamai Y, Watanabe Y (1998) Characterization of a second Gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces Rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14:1167–1174

    PubMed  CAS  Google Scholar 

  • Jacobson K, Dietrich C (1999) Looking at lipid rafts. Trends Cell Biol 9:87–91

    PubMed  CAS  Google Scholar 

  • Jia Z-P, McCullough N, Martel R, Hemmingsen S, Young PG (1992) Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11:1631–1640

    PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Gen 15:29–33

    CAS  Google Scholar 

  • Kagami M, Toh-e A, Matsui Y (1998) Sro7p, a Saccharomyces cerevisiae counterpart of The tumor suppressor l(2)gl protein, is related to myosins in function. Genetics 149:1717–1727

    PubMed  CAS  Google Scholar 

  • Kaiser C (2000) Thinking about the p24 proteins and how transport vesicles select their cargo. Proc Natl Acad Sci USA 3783–3785

    Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SAN (1995) A new family Of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    PubMed  CAS  Google Scholar 

  • Kinclova O, Potier S, Sychrova H (2001a) The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG1 and the SOD2 genes. J Biotechnol 88:151–158

    PubMed  CAS  Google Scholar 

  • Kinclova O, Ramos J, Potier S, Sychrova H (2001b) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40:656–668

    PubMed  CAS  Google Scholar 

  • Kingsbury TJ, Cunningham KW (2000) A conserved family of calcineurin regulators. Genes Dev 14:15951604

    Google Scholar 

  • Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312

    PubMed  CAS  Google Scholar 

  • Ko CH, Gaber RF (1991) TRK1 and TRK2 encodes structurally related K+transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    PubMed  CAS  Google Scholar 

  • Kolling R, Losko S (1997) The linker region of the ABC-transporter Ste6 mediates ubiquit-Ination and fast turnover of the protein. EMBO J 16:2251–2261

    PubMed  CAS  Google Scholar 

  • Kulkarni AA, Abul-Hamd AT, Rai R, El Berry H, Cooper TG (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136–32144

    PubMed  CAS  Google Scholar 

  • Kumar A, Cheung KH, Ross-Macdonald P, Coelho PS, Miller P, Snyder M (2000) TRIPLES: a database of gene function in Saccharomyces cerevisiae. Nucleic Acids Res 28:81–84

    PubMed  CAS  Google Scholar 

  • Kuno T, Tanaka H, Mukai H, Chang CD, Hiraga K, Miyakawa T, Tanaka C (1991) cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. Biochim Biophys Res Commun 180:1159–1163

    CAS  Google Scholar 

  • Kuo MH, Grayhack E (1994) A library of yeast genomic MCM1 binding sites contains Genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Mol Cell Biol 14:348–359

    PubMed  CAS  Google Scholar 

  • Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying Halotolerance in yeasts:a study of 42 species. Microbiology 145:2577–2585

    PubMed  CAS  Google Scholar 

  • Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850–1856

    PubMed  CAS  Google Scholar 

  • Larsson K, Böhl F, Sjöström I, Akhtar N, Strand D, Mechler B, Grabowski R, Adler L (1998) The Saccharomyces cerevisiae SOP 1 and SOP2 genes, which act in cation ho-Meostasis, can be functionally substituted by the Drosophila lethal(2)giant larvae tumor Suppressor gene. J Biol Che m 273:33610–33618

    CAS  Google Scholar 

  • Lehman K, Rossi G, Adamo JE, Brennwald P (1999) Yeast homologues of tomosyn and lethal Giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell Biol 146:125–140

    PubMed  CAS  Google Scholar 

  • Liang H, Ko CH, Herman T, Gaber RF (1998) Trinucleotide insertions, deletions, and point Mutations in glucose transporters confer K+ uptake in Saccharomyces cerevisiae. Mol Cell Biol 18:926–935

    PubMed  CAS  Google Scholar 

  • Liu J, Farmer JD, Lane WS, Friedman J, Weisman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    PubMed  CAS  Google Scholar 

  • Luo W, Chang A (2000) An endosome-to-plasma membrane pathway involved in trafficking Of a mutant plasma membrane ATPase in yeast. Mol Biol Cell 11:579–592

    PubMed  CAS  Google Scholar 

  • Madrid R, Gomez MJ, Ramos J, Rodriguez-Navarro A (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized Membrane potential. J Biol Chem 273:14838–14844

    PubMed  CAS  Google Scholar 

  • Mager WH, De Kruijff AJ (1995) Stress-induced transcriptional activation. Microb Rev 59:506–531

    CAS  Google Scholar 

  • Marquez JA, Pascual-Ahuir A, Proft M, Serrano R (1998) The Ssn6-Tup1 repressor complex Of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and-independent genes. EMBO J 17:2543–2553

    PubMed  CAS  Google Scholar 

  • Marquez JA, Serrano R (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett 382:89–92

    PubMed  CAS  Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    PubMed  CAS  Google Scholar 

  • Matheos DP, Kingsbury TJ, Ashan US, Cunningham KW (1997) Tcn1p/Crz11p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 11:3445–3458

    PubMed  CAS  Google Scholar 

  • Mazur P, Morin N, Baginsky W, El-Sherbeini M, Clemas JA, Nielsen JB, Foor F (1995) Differential expression an function of two homologous subunits of yeast 1,3-\-D-Glucan synthase. Mol Cell Biol 15:5671–5681

    PubMed  CAS  Google Scholar 

  • Mendizabal I, Pascual-Ahuir A, Serrano R, de Larrinoa IF (2001) Promoter sequences regulated by the calcineurin-activated transcription factor Crz1 in the yeast ENA1 gene. Mol Genet Genomics 265:801–811

    PubMed  CAS  Google Scholar 

  • Mendizabal I, Rios G, Mulet JM, Serrano R,, de Larrinoa IF (1998) Yeast putative transcription factors involved in salt tolerance. FEBS Lett 425:323–328

    PubMed  CAS  Google Scholar 

  • Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase cal-cineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269:8792–8796

    PubMed  CAS  Google Scholar 

  • Mewes HW, Albermann K, Bahr M, Frishman D, Gleissner A, Hani J, Heumann K, Kleine K, Maierl A, Oliver SG, Pfeiffer F, Zollner A (1997) Overview of the yeast genome. Nature 387:7–65

    PubMed  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim Biophys Acta 1469:133–157

    PubMed  CAS  Google Scholar 

  • Moskvina E, Schuller C, Maurer CTC, Mager WH, Ruis H (1998) A search in the genome Of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050

    PubMed  CAS  Google Scholar 

  • Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R (1999) A novel mechanism of Ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate The Trk1-Trk2 potassium transporter. Mol Cell Biol 19:3328–3337

    PubMed  CAS  Google Scholar 

  • Mullins C, Bonifacino JS (2001) The molecular machinery for lysosome biogenesis. Bio-Essays 23:333–343

    CAS  Google Scholar 

  • Murguia JR, Belles JM, Serrano R (1995) A saltsensitive 3′(2′), 5′-bisphosphate nucleotidase involved in sulfate activation. Science 267:232–234

    PubMed  CAS  Google Scholar 

  • Murguia JR, Belles JM, Serrano R (1996) The yeast HAL2 nucleotidase is an in vivo target Of salt toxicity. J. Biol. Chem. 271:29029–29033

    PubMed  CAS  Google Scholar 

  • Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. J. Biol Chem 272:26145–25152

    CAS  Google Scholar 

  • Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment Of yeast. Implications for vacuole biogenesis. J Biol Chem 273:21054–21060

    PubMed  CAS  Google Scholar 

  • Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145:3221–3228

    PubMed  CAS  Google Scholar 

  • Navarre C, Catty P, Leterme S, Dietrich F, Goffeau A (1994) Two distinct genes encode Small isoproteolipids affecting plasma membrane H+-ATPase activity of Saccharomyces cerevisiae. J Biol Chem 269:21262–21268

    PubMed  CAS  Google Scholar 

  • Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J. 19:2525–2524

    Google Scholar 

  • Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  • Nilsson A, Adler L (1990) Purification and characterization of glycerol-3-phosphate dehydrogenase (NAD+) in the salt tolerant yeast Debaryomyces hansenii. Biochim Biophys Acta 1034:180–185

    PubMed  CAS  Google Scholar 

  • Ortega MD, Rodriguez-Navarro A (1985) Potassium and rubidium effluxes in Saccharomyces cerevisiae. Z Naturforsch Sect C Biosci 40:721–725

    Google Scholar 

  • Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157

    PubMed  CAS  Google Scholar 

  • Palmer CP, X.L. Z, Lin JL, S.H., Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca +-permeable channel in the yeast vacuolar Membrane. Proc Natl Acad Sci U S A 98:7801–7805

    PubMed  CAS  Google Scholar 

  • Park SY, Seo SB, Lee SJ, Na JG, Kim YJ (2001) Mutation in PMR1, a Ca2+-ATPase in Golgi, confers salt tolerance in Saccharomyces cerevisiae by inducing expression of PMR2, an Na+-ATPase in plasma membrane. J Biol Chem 276:28694–28699

    PubMed  CAS  Google Scholar 

  • Pascual-Ahuir A, Posas F, Serrano R, Proft M (2001a) Multiple levels of control regulate The yeast cAMP-response element-binding protein repressor Sko1p in response to Stress. J Biol Chem 276:37373–37378

    PubMed  CAS  Google Scholar 

  • Pascual-Ahuir A, Serrano R, Proft M (2001b) The Sko1p repressor and Gcn4p activator antagonistically Modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol 21:16–25

    PubMed  CAS  Google Scholar 

  • Pena A, Ramirez J (1991) An energy dependent efflux system for potassium ions in yeast. Biochim Biophys Acta 1008:237–244

    Google Scholar 

  • Perlin DS, Brown CL, Haber JE (1988) Membrane potential defect in hygromycin B-Resistantpma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263:18118–18122

    PubMed  CAS  Google Scholar 

  • Polizotto RS, Cyert MS (2001) Calcineurin-dependent nuclear import of the transcription factor Crz1p requires Nmd5p. J Cell Biol 154:951–960

    PubMed  CAS  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42

    PubMed  CAS  Google Scholar 

  • Portillo F, de Larrinoa IF, Serrano R (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett 247:381–385

    PubMed  CAS  Google Scholar 

  • Posas F, Camps M, Arino J (1995) The PPZ protein phosphatases are important determinants Of salt tolerance in yeast cells. J Biol Chem 270:13036–13041

    PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcrip-Tional response of yeast to saline stress. J Biol Chem 275:17249–17255

    PubMed  CAS  Google Scholar 

  • Prior C, Potier S, Souciet J-L, Sychrova H (1996) Characterization of the NHA1 gene encoding the Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387:89–93

    PubMed  CAS  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high Salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    PubMed  CAS  Google Scholar 

  • Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of The Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic Stress. EMBO J 20:1123–1133

    PubMed  CAS  Google Scholar 

  • Proft M, Serrano R (1999) Repressor and upstream repressing sequences of the stress regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependen osmotic regulation. Mol Cell Biol 19:537–546

    PubMed  CAS  Google Scholar 

  • Ramirez J, Ramirez O, Saldana C, Coria R, Pena A (1998) A Saccharomyces cerevisiae Mutant lacking a K+/H+ exchanger. J Bacteriol 180:5860–5865

    PubMed  CAS  Google Scholar 

  • Ramos J, Alijo R, Haro R, Rodriguez-Navarro A (1994) TRK2 is not a low-affinity potassium Transporter in Saccharomyces cerevisiae. J. Bacteriol 176:249–252

    PubMed  CAS  Google Scholar 

  • Ramos J, Haro R, Rodriguez-Navarro A (1990) Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta 1029:211–217

    PubMed  CAS  Google Scholar 

  • Rao R, Drummond-Barbosa D, Slayman CW (1993) Transcriptional regulation by glucose Of the yeast PMA1 gene encoding the plasma membrane H+-ATPase. Yeast 9:1075–1084

    PubMed  CAS  Google Scholar 

  • Reid JD, Lukas W, Shafaatian R, Bertl A, Scheurmann-Kettner C, Guy HR, North RA (1996) The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a New family of channels with duplicated pore domains. Receptors Channels 4:51–62

    PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of yeast To osmotic shock: Hot1p and Msn2p/Msn2p are required for the induction of subsets Of Hog1p-dependent genes. J Biol Chem 275:8290–8300

    PubMed  CAS  Google Scholar 

  • Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067–1083

    PubMed  CAS  Google Scholar 

  • Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA (1999) LST1 is a SEC24 Homologue used for selective export of the plasma membrane ATPase from the endo-Plasmic reticulum. J Cell Biol 145:659–672

    PubMed  CAS  Google Scholar 

  • Robinson LC, Hubbard EJA, Graves PR, DePaoli-Roach AA, Roach PJ, Kung C, Haas DW, Hagedorn CH, Goebl M, Culbertson MR, Carlson M (1992) Yeast casein kinase I Homologues: an essential gene pair. Proc Natl Acad Sci USA 89:28–32

    PubMed  CAS  Google Scholar 

  • Robinson NG, Guo L, Imai J, Toh-E A, Matsui Y, Tamanoi F (1999) Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase Which interacts with Myo2 and Exo70. Mol Cell Biol 19:3580–3587

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  CAS  Google Scholar 

  • Rodriguéz-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J. Bacteriol. 159:9440–9945

    Google Scholar 

  • Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, Heidtman M, Nelson FK, Iwasaki H, Hager K, Gerstein M, Miller P, Roeder GS, Snyder M (1999) Large-scale analysis of the yeast Genome by transposon tagging and gene disruption. Nature 402:413–418

    PubMed  CAS  Google Scholar 

  • Rothman J (1994) Mechanism of intracellular protein transport. Nature 372:55–63

    PubMed  CAS  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. BioEssays 17:959–965

    PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    PubMed  CAS  Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14

    PubMed  CAS  Google Scholar 

  • Serrano R (1991) Transport across yeast vacuolar and plasma membrane. In: The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 523–585

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defence Responses. IntRev Cytol 165:1–52

    CAS  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+-and Ca2+-ATPases. Nature 319:689–693

    PubMed  CAS  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, Mendizabal I, Pasqual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms Of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    PubMed  CAS  Google Scholar 

  • Simon E, Clotet J, Calero F, Ramos J, Arino J (1999) A screening for high copy suppressors Of the sit4hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 an-Tiporter in cell cycle regulation. J Biol Chem 276:29740–29747

    Google Scholar 

  • Siniossoglou S, Hurt EC, Pelham HRB (2000) Psr1/Psr2, two plasma membrane phos-Phatases with an essential DXDX(T/V) motif required for sodium stress response in Yeast. J Biol Chem 275:19352–19360

    PubMed  CAS  Google Scholar 

  • Soong TW, Yong TF, Ramanan N, Wang Y (2000) The Candida albicans antiporter gene CNH1 has a role in Na+ and H+ transport, salt tolerance, and morphogenesis. Microbiology 146:1035–1044

    PubMed  CAS  Google Scholar 

  • Stathopoulos AM, Cyert MS (1997) Calcineurin acts through the CRZ1/TCN1-encoded Transcription factor to regulate gene expression in yeast. Genes Dev 11:3432–3444

    PubMed  CAS  Google Scholar 

  • Stathopoulos-Gerontides A, Guo JJ, Cyert MS (1999) Yeast calcineurin regulates nuclear Localization of the Crz1p transcription factor through dephosphorylation. Genes Dev 13:798–803

    PubMed  CAS  Google Scholar 

  • Stevens TH, Forgac M (1997) Structure and function and regulation of the vacuolar H+ ATPase. Annu Rev Cell Dev 13:779–808

    CAS  Google Scholar 

  • Sychrova H, Ramirez J, Pena A (1999) Involvement of Nha1 antiporter in regulation of in-Tracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171:167–172

    PubMed  CAS  Google Scholar 

  • Tenney KA, Glover CVC (1999) Transcriptional regulation of the S. cerevisiae ENA1 gene by caseine kinase II. Mol Cell Biochem 191:161–167

    PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde H (1999) Novel sensing mechanisms and targets for the cAMP-Protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    PubMed  CAS  Google Scholar 

  • Wang Q, Chang A (1999) Eps1, a novel PDI-related protein involved in ER quality control In yeast. EMBO J 18:5972–5982

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Iwaki T, Shimono Y, Ichimiya A, Nagaoka Y, Tamai Y (1999) Characterization Of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces Rouxii. J Biosci Bioeng 88:136–142

    PubMed  CAS  Google Scholar 

  • Venema K, Palmgren MG (1995) Metabolic modulation of transport coupling ratio in yeast Plasma membrane H+-ATPase. J Biol Chem 270:19659–19667

    PubMed  CAS  Google Scholar 

  • Viegas CA, Supply P, Capieaux E, Van Dyck L, Goffeau A, Sa-Correia I (1994) Regulation Of the expression of the H+-ATPase genes PMA1 and PMA2 during growth and effects Of octanoic acid in Saccharomyces cerevisiae. Biochim Biophys Acta 1217:74–80

    PubMed  CAS  Google Scholar 

  • Wieland J, Nietsche AM, Strayle J, Steiner H, Rudolph HK (1995) The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma Membrane. EMBO J 14:3870–3882

    PubMed  CAS  Google Scholar 

  • Wiggins PM (1990) Role of water in some biological processes. Microbial Rev 54:432–449

    CAS  Google Scholar 

  • Wiggins PM (2001) High and low density intracellular water. Cell Mol Biol 47:735–744

    PubMed  CAS  Google Scholar 

  • Wilson TH, Ding PZ (2001) Sodium-substrate cotransport in bacteria. Biochim Biophys Acta 1505:121–130

    PubMed  CAS  Google Scholar 

  • Withee JL, Sen R, Cyert MS (1998) Ion tolerance of Saccharomyces cerevisiae lacking the Ca +/CaM-dependent phosphatase (calcineurin) is improved by mutations in URE2 or PMA1. Genetics 149:865–878

    PubMed  CAS  Google Scholar 

  • Wright MB, Ramos J, Gomez MJ, Moulder K, Scherrer M, Munson G, Gaber RF (1997) Ptassium transport by amino acid permeases in Saccharomyces cerevisiae. J Biol Chem 272:13647–13652

    PubMed  CAS  Google Scholar 

  • Wu J, Carmen AA, Kobayashi R, Suka N, Grunstein M (2001a) HDA2 and HD A3 are related Proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc Natl Acad Sci USA 98:4391–4396

    PubMed  CAS  Google Scholar 

  • Wu J, Suka N, Carlson M, Grunstein M (2001b) TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126

    PubMed  CAS  Google Scholar 

  • Wyn Jones RG, Pollard A (1983) Proteins, enzymes and inorganic ions. In: Lauchli A, Pir-Son A (eds) Encyclopedia of Plant Physiology. Springer Verlag, Berlin, pp 528–562

    Google Scholar 

  • Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 42:451–461

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Zhou X-L, Valliant B, Loukin SH, Kung C, Saimi Y (1995) YCK1 encodes the depolarisa-Tion-activated K+ channel in the plasma membrane of yeast. FEBS Lett 373:170–176

    PubMed  CAS  Google Scholar 

  • Östling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent Phosphorylation in the absence of glucose. Eur J Biochem 252:162–168

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wadskog, I., Adler, L. (2003). Ion homeostasis in Saccharomyces cerevisiae under NaCl stress. In: Hohmann, S., Mager, W.H. (eds) Yeast Stress Responses. Topics in Current Genetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45611-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45611-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43926-4

  • Online ISBN: 978-3-540-45611-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics