Probabilistic Unfoldings and Partial Order Fairness in Petri Nets

  • Stefan Haar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2399)


The article investigates fairness and conspiracy in a probabilistic framework, based on unfoldings of Petri nets. Here, the unfolding semantics uses a new, cluster-based view of local choice. The algorithmic construction of the unfolding proceeds on two levels, choice of steps inside conflict clusters, where the choice may be fair or unfair, and the policy controlling the order in which clusters may act; this policy may or may not conspire, e.g., against a transition. In the context of an example where conspiracy can hide in the partial order behavior of a life and 1-safe Petri net, we show that, under non-degenerate i.i.d. randomization on both levels, both conspiracy and unfair behavior have probability 0. The probabilistic model, using special Gibbs potentials, is presented here in the context of 1-safe nets, but extends to any Petri net.


Partial Order Local Choice Probabilistic Unfolding Strong Markov Property Cluster Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modeling with Generalized Stochastic Petri Nets. Wiley, 1995.Google Scholar
  2. 2.
    M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. Generalized Stochastic Petri Nets Revisited: Random Switches and Priorities. In: Proceedings of PNPM’87, IEEE-CS Press, pp. 44–53.Google Scholar
  3. 3.
    A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard. Fault detection and diagnosis in distributed systems: An approach by partially stochastic petri nets. Discrete event dynamic systems 8:203–231, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    L. de Alfaro. From Fairness to Chance. In: Electronic Notes on Theoretical Computer Science 22, Elsevier, 2000.Google Scholar
  5. 5.
    L. de Alfaro. Stochastic Transition Systems. In: CONCUR’98, LNCS 1466:423–438, Springer-Verlag, 1998.Google Scholar
  6. 6.
    K.R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed programming. Distributed Computing 2:226–241, 1988.zbMATHCrossRefGoogle Scholar
  7. 7.
    K.R. Attie, N. Francez, and O. Grumberg. Fairness and hyperfairness in multi-parti interactions. Distributed Computing 6:245–254, 1993.zbMATHCrossRefGoogle Scholar
  8. 8.
    A. Benveniste, S. Haar, and E. Fabre. Markov Nets: probabilistic Models for Distributed and Concurrent Systems. INRIA Report 4235, 2001.Google Scholar
  9. 9.
    E. Best. Fairness and Conspiracies. Information Processing Letters 18(4):215–220, 1984. Erratum ibidem 19:162.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. L. Chung. A Course in Probability Theory. Academic Press, 1974.Google Scholar
  11. 11.
    C. Derman. Finite State Markovian Decision Processes. Acad. Press, 1970.Google Scholar
  12. 12.
    J. Desel and J. Esparza. Free Choice Petri Nets. Camb. Univ. Press, 1995.Google Scholar
  13. 13.
    R. Dobrushin. The description of a random field by means of conditional probabilities and conditions of its regularity. Th. Prob. Appl. 13:197–224, 1968.CrossRefGoogle Scholar
  14. 14.
    S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck games. IEEE Trans on Par. and Dist. Systems, 8(4):424–440, 1997.CrossRefGoogle Scholar
  15. 15.
    J. Engelfriet. Branching Processes of Petri Nets. Acta Inf. 28:575–591, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan’s Unfolding Algorithm. In: TACAS’96, LNCS 1055:87–106, Springer 1996. Extended version to appear in Formal Methods in System Design. Google Scholar
  17. 17.
    J. Esparza. Model Checking Using Net Unfoldings. Science of Computer Programming 23:151–195, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    N. Francez. Fairness. Springer, 1986.Google Scholar
  19. 19.
    S. Haar. Branching Processes of general S/T-Systems. Electronic Notes in Theoretical Computer Science 18, 1998.Google Scholar
  20. 20.
    S. Haar. Occurrence Net Logics. Fund. Informaticae 43:105–127, 2000.zbMATHMathSciNetGoogle Scholar
  21. 21.
    S. Haar. Clusters, confusion and unfoldings. Fund.Informaticae 47(3-4):259–270, 2001.zbMATHMathSciNetGoogle Scholar
  22. 22.
    S. Haar. Probabilistic Cluster Unfoldings for Petri Nets. INRIA Research Report 4426, 2002;;
  23. 23.
    M. Jaeger. Fairness, Computable Fairness and Randomness. PROBMIV’99, Tech. Report CSR-99-8, School of CS, Univ. of Birmingham 1999.Google Scholar
  24. 24.
    R. Kindermann and J. L. Snell. Markov Random Fields and their Applications. AMS Contemporary Mathematics Vol. 1, Providence 1980.Google Scholar
  25. 25.
    M. Kwiatkowska. Event fairness and non-interleaving concurrency. Formal Aspects of Computing 1:213–228, 1989.CrossRefGoogle Scholar
  26. 26.
    K. McMillan. Using Unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. 4th CAV, pp. 164–174, 1992.Google Scholar
  27. 27.
    M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains. Part I. Theoretical Computer Science 13:85–108, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M.O. Rabin. Probabilistic Automata. Inf. and Control 6:230–245, 1963.CrossRefGoogle Scholar
  29. 29.
    G. Rozenberg and J. Engelfriet. Elementary Net Systems. In: Lectures on Petri Nets I: Basic Models. LNCS 1491, pp. 12–121, Springer, 1998.Google Scholar
  30. 30.
    R. Segala. Verification of Randomized Distributed Algorithms. In: LNCS 2090:232–260, Springer 2001.Google Scholar
  31. 31.
    H. Völzer. Randomized non-sequential processes. In: Proc. CONCUR 2001. LNCS 2154, Springer, August 2001.CrossRefGoogle Scholar
  32. 32.
    W. Vogler. Fairness and Partial Order Semantics. Inf. Proc. Letters 55(1): 33–39, 1995.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stefan Haar
    • 1
  1. 1.INRIA IRISARennes cedexFrance

Personalised recommendations