Skip to main content

Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol

  • Conference paper
  • First Online:
Process Algebra and Probabilistic Methods: Performance Modeling and Verification (PAPM-PROBMIV 2002)

Abstract

The international standard IEEE 802.11 was developed recently in recognition of the increased demand for wireless local area networks. Its medium access control mechanism is described according to a variant of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme. Although collisions cannot always be prevented, randomised exponential backoff rules are used in the retransmission scheme to minimise the likelihood of repeated collisions. More precisely, the backoff procedure involves a uniform probabilistic choice of an integer-valued delay from an interval, where the size of the interval grows exponentially with regard to the number of retransmissions of the current data packet. We model the two-way handshake mechanism of the IEEE 802.11 standard with a fixed network topology using probabilistic timed automata, a formal description mechanism in which both nondeterministic choice and probabilistic choice can be represented. From our probabilistic timed automaton model, we obtain a finite-state Markov decision process via a property-preserving discrete-time semantics. The Markov decision process is then verified using Prism, a probabilistic model checking tool, against probabilistic, timed properties such as “at most 5,000 microseconds pass before a station sends its packet correctly.”

Supported in part by the EPSRC grant GR/N22960, the CNR grant No.99.01716.CTO1, and the EU within the DepAuDE project IST-2001-25434.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing verification by successive approximation. Information and Computation, 18(1):142–157, 1995.

    Article  MathSciNet  Google Scholar 

  3. D. Beyer. Improvements in BDD-based reachability analysis of timed automata. In Proc. FME’01, volume 2021 of LNCS, pages 318–343. Springer, 2001.

    Google Scholar 

  4. G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communication, 18:535–547, 2000.

    Article  Google Scholar 

  5. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Proc. FSTTCS’95, volume 1026 of LNCS, pages 499–513. Springer, 1995.

    Google Scholar 

  6. E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-Terminal Binary Decision Diagrams: An efficient data structure for matrix representation. In Proc. IWLS’93, pages 6a:1–15, 1993. Also available in Formal Methods in System Design, 10(2/3), 1997.

    Google Scholar 

  7. C. Daws and S. Yovine. Two examples of verification of multirate timed automata with Kronos. In Proc. RTSS’95, pages 66–75. IEEE Computer Society Press, 1995.

    Google Scholar 

  8. L. de Alfaro. Computing minimum and maximum reachability times in probabilistic systems. In Proc. CONCUR’99, volume 1664 of LNCS, pages 66–81. Springer, 1999.

    Google Scholar 

  9. C. Derman. Finite-State Markovian Decision Processes. Academic Press, 1970.

    Google Scholar 

  10. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

    Article  MATH  Google Scholar 

  11. A. Heindl and R. German. Performance modeling of IEEE 802.11 wireless LANs with stochastic Petri nets. Performance Evaluation, 44:139–164, 2001.

    Article  MATH  Google Scholar 

  12. T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In Proc. TACAS’95, volume 1019 of LNCS, pages 41–71. Springer, 1995.

    Google Scholar 

  13. H. Jensen, K. Larsen, and A. Skou. Scaling up Uppaal: Automatic verification of real-time systems using compositionality and abstraction. In Proc. FTRTFT 2000, volume 1926 of LNCS, pages 19–30. Springer, 2000.

    Google Scholar 

  14. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Graduate Texts in Mathematics. Springer, 2nd edition, 1976.

    Google Scholar 

  15. A. Koepsel, J.-P. Ebert, and A. Wolisz. A performance comparison of point and distributed coordination function of an IEEE 802.11 WLAN in the presence of real-time requirements. In Proc. MoMuC 2000, 2000.

    Google Scholar 

  16. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with Prism: A hybrid approach. In Proc. TACAS 2002, volume 2280 of LNCS, pages 52–66. Springer, 2002.

    Google Scholar 

  17. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science, 286, 2002. To appear.

    Google Scholar 

  18. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of deadline properties in the IEEE 1394 FireWire root contention protocol. Submitted. Extended abstract appears in Proc. Int. Workshop on Application of Formal Methods to IEEE 1394 Standard, 2001.

    Google Scholar 

  19. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE 802.11 wireless local area network protocol. Technical Report CSR-02-05, School of Computer Science, University of Birmingham, 2002.

    Google Scholar 

  20. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology Transfer, 1(1+2):134–152, 1997.

    Article  MATH  Google Scholar 

  21. Prism web page. http://www.cs.bham.ac.uk/~dxp/prism/.

  22. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

    Google Scholar 

  23. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Computing, 2(2):250–273, 1995.

    MATH  MathSciNet  Google Scholar 

  24. D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a root contention protocol using Uppaal2k. Software Tools for Technology Transfer, 3(4):469–485, 2001.

    MATH  Google Scholar 

  25. S. Tripakis. The formal analysis of timed systems in practice. PhD thesis, Université Joseph Fourier, 1998.

    Google Scholar 

  26. S. Tripakis. Timed diagnostics for reachability properties. In Proc. TACAS’99, volume 1579 of LNCS, pages 59–73. Springer, 1999.

    Google Scholar 

  27. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. FOCS’85, pages 327–338. IEEE Computer Society Press, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwiatkowska, M., Norman, G., Sproston, J. (2002). Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In: Hermanns, H., Segala, R. (eds) Process Algebra and Probabilistic Methods: Performance Modeling and Verification. PAPM-PROBMIV 2002. Lecture Notes in Computer Science, vol 2399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45605-8_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45605-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43913-4

  • Online ISBN: 978-3-540-45605-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics