Skip to main content

Data analysis methods in geodesy

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 95))

Abstract

“Geodesy” is a term coined by the Greeks in order to replace the original term “geometry”, which had meanwhile lost its original meaning of “earth or land measuring” (surveying) and acquired the new meaning of an abstract “theory of shapes”. Aristotle tells us in his “Metaphysics” that the two terms differ only in this respect: “Geodesy refers to things that can be sensed, while geometry to things that they cannot”. Many centuries afterwards the word geodesy was set in use anew, to denote the determination of the shape of initially parts of the earth surface and eventually, with the advent of space methods, the shape of the whole earth. Thus it remained an applied science, while facing at the same time significant and challenging theoretical problems, in both physical modeling and data analysis methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruns, H. (1878): Die Figur der Erde. Publication des Königl. Preussischen Geodätischen Instituts, Berlin.

    Google Scholar 

  • Baarda, W. (1973): S-transformations and Criterion Matrices. Publications on Geodesy, Vol. 5, Nr. 5. Netherlands Geodetic Commission, Delft.

    Google Scholar 

  • Christakos, G. (1992): Random Field Models in Earth Sciences. Academic Press.

    Google Scholar 

  • Colombo, O.L. (1986): Notes on the Mapping of the Gravity Field Using Satellite Data. In: H. Sünkel (ed.): Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences, vol. 7, 40–155, Springer.

    Google Scholar 

  • Dermanis, A. (1978): Adjustment of geodetic observations in the presence of signals. International School of Advanced Geodesy, Erice, Sicily, May–June 1978. Bollettino di Geodesia e Scienze Affini, 38 (1979), 4, 513–539.

    Google Scholar 

  • Dermanis, A. (1988): Geodetic Applications of Interpolation and Prediction. Inter. School of Geodesy “A. Marussi”, 4th Course: Applied and Basic Geodesy: Present and Future Trends, Ettore Majorana Centre for Scientific Culture, Erice-Sicily, 15–25 June 1987. Eratosthenes, 22, 229–262.

    Google Scholar 

  • Dermanis, A. (1991): A Unified Approach to Linear Estimation and Prediction. Presented at the 20th General Assembly of the IUGG, Vienna, August 1990.

    Google Scholar 

  • Dermanis, A. (1998): Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. Journal of Geodesy, 72, 2, 71–100.

    Article  Google Scholar 

  • Dermanis A. (1999): Space Techniques in Geodesy and Geodynamics--GPS. Ziti Editions, Thessaloniki (in Greek).

    Google Scholar 

  • Heiskanen, W.A. and H. Moritz (1967): Physical Geodesy. Freeman, San Francisco.

    Google Scholar 

  • Helmert, F. R. (1880): Die mathematischen und physikalischen Theorien der höheren Geodäsie. B.G. Teubner, Leipzig.

    Google Scholar 

  • Hofmann-Wellenhof, B., H. Lichtenegger and J. Collins (1997): Global Positioning System. Theory and Practice. Fourth Revised Edition. Springer.

    Google Scholar 

  • Hotine, M. (1969): Mathematical Geodesy. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Koch, K.-R. (1999): Parameter Estimation and Hypothesis Testing in Linear Models. Second Edition. Springer, Berlin.

    Google Scholar 

  • Krarup, T. (1969): A contribution to the mathematical foundation of physical geodesy. Danish Geodetic Institute, Meddelelse no. 44, Copenhagen.

    Google Scholar 

  • Lanczos, C. (1961,1967): Linear Differential Operators. Van Nostrand, London. (Dover Reprint, 1967.)

    Google Scholar 

  • Lauritzen, S. (1973): The Probabilistic Background of Some Statistical Methods in Physical Geodesy. Danish Geodetic Institute, Meddelelse no. 48, Copenhagen.

    Google Scholar 

  • Leick, A. (1995): GPS Satellite Surveying. 2nd Edition. Wiley.

    Google Scholar 

  • Rao, C.R. and S.K. Mitra (1971): Generalized Inverse of Matrices and its Applications. Wiley, New York.

    Google Scholar 

  • Reigber, Ch. (1989): Gravity field recovery from satellite data. In: F. Sansö & R. Rummel, Eds., ‘Theory of Satellite Geodesy and Gravity Field Determination’, Lecture Notes in Earth Sciences 25, 197–234, Springer-Verlag.

    Google Scholar 

  • Rummel, R. (1997): Spherical spectral properties of the earth’s gravitational potential and its first and second order derivatives. In: F. Sansò & R. Rummel, Eds.,’ Geodetic Boundary Value Problems in View of the One Centimeter Geoid’, Lecture Notes in Earth Sciences 65, 399–404. Springer-Verlag.

    Google Scholar 

  • Rummel, R. and M. van Gelderen (1995): Meissl scheme-Spectral characteristics of Physical Geodesy. Manuscripta Geodaetica, 20, 379–385.

    Google Scholar 

  • Sansò, F. (1978): The minimum mean square estimation principle in physical geodesy (stochastic and non-stochastic interpretation). 7th Hotine Symposium on Mathematical Geodesy, Assissi, June 1978. Bollettino di Geodesia e Scienze Affini, 39 (1980), 2, 111–129.

    Google Scholar 

  • Sansò, F. (1986): Statistical Methods in Physical Geodesy. In: H. Sünkel (ed.): Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences, vol. 7, 49–155, Springer.

    Google Scholar 

  • Sansò F. and G. Sona (1995): The theory of optimal linear estimation for continuous fields of measurements. Manuscripta Geodaetica, 20, 204–230.

    Google Scholar 

  • Schaffrin, B. (1983): Model Choice and Adjustment Techniques in the Presence of Prior Information. Ohio State University Department of Geodetic Science and Surveying, Report No. 351, Columbus.

    Google Scholar 

  • Schaffrin, B. (1985): Das geodätische Datum mit stochastischer Vorinformation. Habilitationsschrift, Universität Stuttgart. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 313, München.

    Google Scholar 

  • Schaffrin, B., E. Grafarend, G. Sschmitt (1977): Kaninisches Design Geodätischer Netze 1, Manuscripta Geodaetica, 2, 293–306.

    Google Scholar 

  • Schneider, M. (1988): Satellitengeodäsie. Bibliographisches Institut, Mannheim.

    Google Scholar 

  • Taylor, A.E. and D.C. Lay (1980): Introduction to Functional Analysis. Second Edition. Wiley, New York.

    Google Scholar 

  • Teunissen, P.J.G. and A. Kleusberg, Eds. (1998): GPS for Geodesy. 2nd Edition. Springer.

    Google Scholar 

  • Tikhonov, A. and V. Arsenin (1977): Solutions of Ill-Posed Problems. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dermanis, A., Rummel, R. (2000). Data analysis methods in geodesy. In: Dermanis, A., Grün, A., Sansò, F. (eds) Geomatic Method for the Analysis of Data in the Earth Sciences. Lecture Notes in Earth Sciences, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45597-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45597-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67476-4

  • Online ISBN: 978-3-540-45597-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics