A New Computation of Shape Moments via Quadtree Decomposition

  • Chin-Hsiung Wu
  • Shi-Jinn Horng
  • Pei-Zong Lee
  • Shung-Shing Lee
  • Shih-Ying Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1800)


The main contribution of this paper is in designing an optimal and/or optimal speed-up algorithm for computing shape moments. We introduce a new technique for computing shape moments. The new technique is based on the quadtree representation of images. We decompose the image into squares, since the moment computation of squares is easier than that of the whole image. The proposed sequential algorithm reduces the computational complexity significantly. By integrating the advantages of both optical transmission and electronic computation, the proposed parallel algorithm can be run in O(1) time. In the sense of the product of time and the number of processors used, the proposed parallel algorithm is time and cost optimal and achieves optimal speed-up.


Binary Image Sequential Algorithm Moment Computation Digit Position Double Summation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Asher, Y., Peleg, D., Ramaswami, R., Schuster, A.: The Power of Reconfiguration. Journal of Parallel and Distributed Computing 13 (1991) 139–153CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chung, K.-L.: Computing Horizontal/vertical Convex Shape’s Moments on Reconfigurable Meshes. Pattern Recognition 29 (1996) 1713–1717CrossRefGoogle Scholar
  3. 3.
    Dai, M., Batlou, P., Najim, M.: An Efficient Algorithm for Computation of Shape Moments from Run-length Codes or Chain Codes. Pattern Recognition 25 (1992) 1119–1128CrossRefGoogle Scholar
  4. 4.
    Guo, Z., Melhem, R. G., Hall, R. W., Chiarulli, D. M., Levitan, S. P.: Pipelined Communications in Optically Interconnected Arrays. Journal of Parallel and Distributed Computing 12 (1991) 269–282CrossRefGoogle Scholar
  5. 5.
    Hatamian, M.: A Real Time Two-dimensional Moment Generation Algorithm and Its Single Chip Implementation. IEEE Trans. ASPP 34 (1986) 546–553CrossRefGoogle Scholar
  6. 6.
    Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IRE Trans. Inform. Theory IT-8 (1962) 179–187Google Scholar
  7. 7.
    Lee, S.-S., Horng, S.-J., Tsai, H.-R., Tsai, S.-S.: Building a Quadtree and Its Applications on a Reconfigurable Mesh. Pattern Recognition 29 (1996) 1571–1579CrossRefGoogle Scholar
  8. 8.
    Li, B.-C., Shen, J.: Fast Computation of Moment Invariants. Pattern Recognition 24 (1991) 8071–813Google Scholar
  9. 9.
    Pan, Y., Li, K.: Linear Array with a Reconfigurable Pipelined Bus System— Concepts and Applications. Information Sciences-An Int. Journal 106 (1998) 237–258CrossRefGoogle Scholar
  10. 10.
    Pavel, S., Akl, S. G.: On the Power of Arrays with Reconfigurable Optical Bus. Proc. Int. Conf. Parallel and Distributed Processing Techniques and Applications (1996) 1443–1454Google Scholar
  11. 11.
    Pavel, S., Akl, S. G.: Matrix Operations Using Arrays with Reconfigurable Optical Buses. Parallel Algorithms and Applications 8 (1996) 223–242zbMATHGoogle Scholar
  12. 12.
    Shaffer, C. A., Samet, H.: Optimal Quadtree Construction Algorithms. Computer Vision, Graphics, Image processing 37 (1987) 402–419CrossRefGoogle Scholar
  13. 13.
    Wu, C.-H., Horng, S.-J., Tsai, H.-R.: Template Matching on Arrays with Reconfigurable Optical Buses. Proc. Int. Symp. Operations Research and its Applications (1998), 127–141Google Scholar
  14. 14.
    Yang, L., Albregtsen, F.: Fast and Exact Computation of Cartesian Geometric Moments Using Discrete Green’s Theorem. Pattern Recognition 29 (1996) 1061–1073CrossRefGoogle Scholar
  15. 15.
    Zakaria, M. F., Zsombor-Murray, P. J. A., Kessel, J. M. H. H.: Fast Algorithm for the Computation of Moment Invariants. Pattern Recognition 20 (1987) 639–643CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Chin-Hsiung Wu
    • 1
  • Shi-Jinn Horng
    • 1
    • 2
  • Pei-Zong Lee
    • 2
  • Shung-Shing Lee
    • 3
  • Shih-Ying Lin
    • 3
  1. 1.National Taiwan University of Science and TechnologyTaipeiTaiwan, R. O. C.
  2. 2.Institute of Information ScienceAcademia SinicaTaipeiTaiwan, R. O. C.
  3. 3.Fushin Institute of Technology and CommerceI-LainTaiwan, R. O. C.

Personalised recommendations