Tripod: A Comprehensive Model for Spatial and Aspatial Historical Objects

  • Tony Griffiths
  • Alvaro A.A. Fernandes
  • Norman W. Paton
  • Keith T. Mason
  • Bo Huang
  • Michael Worboys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2224)


Spatio-temporal extensions to data models have been an active area of research for a number of years. To date, much of this work has focused on the relational data model, with object data models receiving far less consideration. This paper presents a spatio-historical object model that uses a specialized mechanism, called a history, to maintain knowledge about entities that change over time. Key features of the resulting proposal include: (i) consistent representations of primitive spatial and temporal types; (ii) a component-based design in which spatial, temporal and historical extensions are formalized incrementally, for subsequent use together or separately; (iii) a formally specified data model. The model can be used directly during the design of spatio-historical applications, but also forms the basis of an implementation activity developing a spatio-historical object database management system.


Object Model Temporal Type Historical Property Temporal Database Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11):832–843, 1983.zbMATHGoogle Scholar
  2. [2]
    E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. Extending the ODMG Object Model with Time. Proc. ECOOP’98, pp. 41–66, 1998.Google Scholar
  3. [3]
    R. G. G. Cattell, editor. The Object Database Standard: ODMG 3.0. Morgan Kaufmann, 2000.Google Scholar
  4. [4]
    C. X. Chen and C. Zaniolo. SQLST: A spatio-temporal data model and query language. Proc. ER 2000, LNCS 1920, pp. 96–111, 2000.Google Scholar
  5. [5]
    C. S. Jensen et al. The Consensus Glossary of Temporal Database Concepts. Temporal Databases: Research and Practice, LNCS 1399, pp. 367–405, 1998.CrossRefGoogle Scholar
  6. [6]
    L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective Calculus. ACM TODS, 25(4):457–516, 2000.CrossRefzbMATHGoogle Scholar
  7. [7]
    A. U. Frank et al. CHOROCHRONOS, A Research Network for Spatiotemporal Database Systems. SIGMOD Record, 28(3):12–21, 1999.CrossRefGoogle Scholar
  8. [8]
    S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal Databases. ACM TODS, 13(4):418–448, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Griffths, A.A.A. Fernandes, N. Djafri, and N.W. Paton. A Query Calculus for Spatio-Temporal Object Databases. In Proc. TIME’01, pp. 101–110, 2001.Google Scholar
  10. [10]
    T. Griffths, N.W. Paton, and A.A.A. Fernandes. An ODMG-Compliant Spatio-Temporal Data Model.
  11. [11]
    T. Griffths, N.W. Paton, and A.A.A. Fernandes. Realm-Based Temporal Data Types.
  12. [12]
    L. E. McKenzie Jr and R. T. Snodgrass. Evaluation of Relational Algebras Incorporating the Time Dimension in Databases. ACM Computing Surveys, 23(4):501–543, 1991.CrossRefGoogle Scholar
  13. [13]
    P. Ladkin. The Logic of Time Representation. PhD thesis, University of California at Berkeley, November 1987.Google Scholar
  14. [14]
    G. Langran. Time in Geographical Information Systems. Taylor and Francis, 1992.Google Scholar
  15. [15]
    V. Müller, N. W. Paton, A. A. Fernandes, A. Dinn, and M. H. Williams. Virtual Realms: An Efficient Implementation Strategy for Finite Resolution Spatial Data Types. Proc. SDH’96, pp. IIB.1–IIB.13, 1996.Google Scholar
  16. [16]
    C. Parent, S. Spaccapietra, and E. Zimányi. Spatio-temporal conceptual models: Data structures + space + time. Proc. ACM-GIS’ 99, pp. 26–33, 1999.Google Scholar
  17. [17]
    D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Object Trajectories. Proc. VLDB 2000, pp. 395–406, 2000.Google Scholar
  18. [18]
    R. H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4(2):243–286, 1995.CrossRefGoogle Scholar
  19. [19]
    R. H. Güting, T. de Ridder, and M. Schneider. Implementation of the ROSE Algebra: Efficient Algorithms for Realm-Based Spatial Data Types. Proc. SSD’95, LNCS 951, pp. 216–239, 1995.Google Scholar
  20. [20]
    R. H. Güing, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. ACM TODS, 25(1):1–42, 1000.CrossRefGoogle Scholar
  21. [21]
    R. T. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison Modern Database Systems: The Oobject Model, Interoperability and Beyond, pp. 386–408. Addison-Wesley/ACM Press, 1995.Google Scholar
  22. [22]
    R. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann Publishers, 2000.Google Scholar
  23. [23]
    A. Pavlopoulos and C. Theodoulidis. Review of Spatio-Temporal Data Models. Technical report, Department of Computation, UMIST, United Kingdom, October 1998.
  24. [24]
    C. Theodoulidis and P. Loucopoulos. The time dimension in conceptual modelling. Information Systems, 16(3):273–300, 1991.CrossRefGoogle Scholar
  25. [25]
    M. Warboys. A Unified Model for Spatial and Temporal Information. The Computer Journal, 37(1):25–34, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Tony Griffiths
    • 1
  • Alvaro A.A. Fernandes
    • 1
  • Norman W. Paton
    • 1
  • Keith T. Mason
    • 2
  • Bo Huang
    • 3
  • Michael Worboys
    • 3
  1. 1.Department of Computer ScienceUniversity of ManchesterManchesterUK
  2. 2.School of Earth Sciences and GeographyUniversity of KeeleStaffordshireUK
  3. 3.Department of Computer ScienceUniversity of KeeleStaffordshireUK

Personalised recommendations