Dimension Hierarchies Design from UML Generalizations and Aggregations

  • Jacky Akoka
  • Isabelle Comyn-Wattiau
  • Nicolas Prat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2224)


Data for decision-making applications are based on dimensions, such as time, customer, and product. These dimensions are naturally related by hierarchies. Hierarchies are crucial to multidimensional modeling. Defining hierarchies using star or snowflake schemas can be misleading, since they are not explicitly well-modeled. However, deriving them from conceptual UML or ER schemas is a non-trivial task since they have no direct equivalent in conceptual models. This paper focuses on the definition of multidimensional hierarchies. We present and illustrate rules for defining multidimensional hierarchies from UML schemas, especially based on aggregation and generalization hierarchies. The definition of hierarchies is part of a data warehouse design method based on the three usual modeling levels : conceptual, logical, and physical. The conceptual schema is based on the UML notation. The logical schema is represented using a unified pivot multidimensional model. The physical schema depends on the target ROLAP or MOLAP tool.


Unify Modeling Language Data Warehouse Mapping Rule Minimum Cardinality Multidimensional Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. 13th International Conference on Data Engineering (ICDE’ 97), Birmingham, UK, April.Google Scholar
  2. 2.
    Baralis, E., Paraboschi, S., Teniente, E.: Materialized view selection in a multidimensional database. Proceedings of the International Conference on Very Large Databases (1997)Google Scholar
  3. 3.
    Blaschka, M., Sapia, C., Höfling, G., Dinter, B.: Finding your way through multidimensional data models. DEXA Workshop on Data Warehouse Design and OLAP Technology (DWDOT’ 98), Vienna, Austria.Google Scholar
  4. 4.
    Cabibbo, L.,. Torlone, R.: A Logical Approach to Multidimensional Databases. Proceedings of 6th International Workshop on Extending Database Technology (EDBT’1998), Valencia (Spain), March.Google Scholar
  5. 5.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP Technology. SIGMOD Record, 26(1) (1997)Google Scholar
  6. 6.
    Gebhardt, M., Jarke, M., Jacobs, S.: A Toolkit for Negotiation Support Interfaces to Multidimensional Data. Proceedings of ACM SIGMOD Conf, Arizona, USA (1997)Google Scholar
  7. 7.
    Golfarelli, M.,.Maio, D.,.Rizzi, S.: Conceptual design of data warehouses from E/R schemes. 31st Hawaii International Conference on System Sciences, Hawaii, USA (1998)Google Scholar
  8. 8.
    Golfarelli, M., Rizzi, S.: A methodological framework for data warehousing design. ACM workshop on data warehousing and OLAP (1998)Google Scholar
  9. 9.
    Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases. 23rd VLDB Conference, Athens, Greece (1997)Google Scholar
  10. 10.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse design. 2nd International Workshop on Design and Management of Data Warehouses (DMDW 2000), Stockholm, Sweden, JuneGoogle Scholar
  11. 11.
    Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison Wesley Publishing CompanyGoogle Scholar
  12. 12.
    Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D.: What can Hierarchies do for Data Warehouses ? Proceedings of the 25th VLDB Conference, Edinburgh, Scotland (1999)Google Scholar
  13. 13.
    Kimball, R.: The data warehouse toolkit. John Wiley & SonsGoogle Scholar
  14. 14.
    Kimball, R.: A Dimensional Modeling Manifesto. DBMS on-line.
  15. 15.
    Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multidimensional Databases. Proceedings 10th SSDBM conference, Italy, July (1998)Google Scholar
  16. 16.
    Li, C., Wang, X.S.: A data model for supporting on-line analytical processing., Proceedings Conference on Information and Knowledge Management (CIKM’1996), Baltimore, USAGoogle Scholar
  17. 17.
    Moody, D.L., Kortink, M.A.R.: From Enterprise Models to Dimensional Models: A Methodology for Data Warehouse and Data Mart Design. 2nd International Workshop on Design and Management of Data Warehouses (DMDW 2000), Stockholm, Sweden (2000)Google Scholar
  18. 19.
    Pedersen, T.B., Jensen, C.S.: Multidimensional data modeling for complex data. 15th International Conference on Data Engineering (ICDE’ 99), Sydney, Australia (1999)Google Scholar
  19. 20.
    Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the Multidimensional Paradigm. International Workshop on Data Warehousing and Data Mining in conjunction with ER98, Singapore (1998)Google Scholar
  20. 21.
    Smith, JM., Smith, DCP “Database Abstractions: Aggregations and Generalizations”. ACM TODS, 2(2) (1977)Google Scholar
  21. 22.
    Vassiliadis, P.: Gulliver in the land of data warehousing: practical experiences and observations of a researcher. Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW’2000), Stockholm, June (1999)Google Scholar
  22. 23.
    Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD Record, 28(4) December (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jacky Akoka
    • 1
  • Isabelle Comyn-Wattiau
    • 2
  • Nicolas Prat
    • 3
  1. 1.CEDRIC-CNAM & INTPARIS Cedex 03France
  2. 2.Université de Cergy & ESSECPONTOISE CedexFrance
  3. 3.ESSECCERGY CedexFrance

Personalised recommendations