Skip to main content

Fast, Constraint-Based Threading of HP-Sequences to Hydrophobic Cores

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming — CP 2001 (CP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2239))

Abstract

Lattice protein models are used for hierarchical approaches to protein structure prediction, as well as for investigating principles of protein folding. So far, one has the problem that there exists no lattice that can model real protein conformations with good quality and for which an efficient method to find native conformations is known.

We present the first method for the FCC-HP-Model [3] that is capable of finding native conformations for real-sized HP-sequences. It has been shown [23] that the FCC lattice can model real protein conformations with coordinate root mean square deviation below 2 Å.

Our method uses a constraint-based approach. It works by first calculating maximally compact sets of points (hydrophobic cores), and then threading the given HP-sequence to the hydrophobic cores such that the core is occupied by H-monomers.

Supported by the PhD programme “Graduiertenkolleg Logik in der Informatik” (GKLI) of the “Deutsche Forschungsgemeinschaft” (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich. Impact of local and nonlocal interactions on thermodynamics and kinetics of protein folding. Journal of Molecular Biology, 252:460–471, 1995.

    Article  Google Scholar 

  2. V.I. Abkevich, A.M. Gutin, and E.I. Shakhnovich. Computer simulations of prebiotic evolution. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, and Teri E. Klein, editors, PSB’97, pages 27–38, 1997.

    Google Scholar 

  3. Richa Agarwala, Serafim Batzoglou, Vlado Dancik, Scott E. Decatur, Martin Farach, Sridhar Hannenhalli, S. Muthukrishnan, and Steven Skiena. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP-model. Journal of Computational Biology, 4(2):275–296, 1997.

    Article  Google Scholar 

  4. Rolf Backofen. Constraint techniques for solving the protein structure prediction problem. In Michael Maher and Jean-Francois Puget, editors, Proceedings of 4 thInternational Conference on Principle and Practice of Constraint Programming (CP’98), volume 1520 of Lecture Notes in Computer Science, pages 72–86. Springer Verlag, 1998.

    Google Scholar 

  5. Rolf Backofen. An upper bound for number of contacts in the HP-model on the face-centered-cubic lattice (FCC). In Raffaele Giancarlo and David Sanko., editors, Proc. of the 11th Annual Symposium on Combinatorial Pattern Matching (CPM2000), volume 1848 of Lecture Notes in Computer Science, pages 277–292, Berlin, 2000. Springer-Verlag.

    MATH  Google Scholar 

  6. Rolf Backofen and Sebastian Will. Optimally compact finite sphere packings — hydrophobic cores in the FCC. In Amihood Amir and Gad Landau, editors, Proc. of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM2001), volume 2089 of Lecture Notes in Computer Science, pages 257–271, Berlin, 2001. Springer-Verlag.

    MATH  Google Scholar 

  7. Rolf Backofen, Sebastian Will, and Erich Bornberg-Bauer.Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets. J. Bioinformatics, 15(3):234–242, 1999.

    Article  Google Scholar 

  8. Rolf Backofen, Sebastian Will, and Peter Clote. Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, and Teri E. Klein, editors, Pacific Symposium on Biocomputing (PSB 2000), volume 5, pages 92–103, 2000.

    Google Scholar 

  9. U Bastolla, H Frauenkron, E Gerstner, P Grassberger, and W Nadler. Testing a new monte carlo algorithm for protein folding. Proteins, 32(1):52–66, 1998.

    Article  Google Scholar 

  10. B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) modell is NP-complete. In Proc. of the Second Annual International Conferences on Compututational Molecular Biology (RECOMB98), pages 30–39, New York, 1998.

    Google Scholar 

  11. Erich Bornberg-Bauer. Chain growth algorithms for HP-type lattice proteins. In Proc. of the 1 stAnnual International Conference on Computational Molecular Biology (RECOMB), pages 47–55. ACM Press, 1997.

    Google Scholar 

  12. P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the complexity of protein folding. In Proc. of STOC, pages 597–603, 1998. Short version in Proc. of RECOMB’98, pages 61-62.

    Google Scholar 

  13. K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, and H.S. Chan. Principles of protein folding-a perspective of simple exact models. Protein Science, 4:561–602, 1995.

    Article  Google Scholar 

  14. Ken A. Dill, Klaus M. Fiebig, and Hue Sun Chan. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA, 90:1942–1946, 1993.

    Google Scholar 

  15. Aaron R. Dinner, Andreaj Šali, and Martin Karplus. The folding mechanism of larger model proteins: Role of native structure. Proc. Natl. Acad. Sci. USA, 93:8356–8361, 1996.

    Google Scholar 

  16. Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of the Association for Computing Machinery, 29(1):24–32, 1982.

    Article  MathSciNet  Google Scholar 

  17. S. Govindarajan and R. A. Goldstein. The foldability landscape of model proteins. Biopolymers, 42(4):427–438, 1997.

    Article  Google Scholar 

  18. Patrice Koehl and Michael Levitt. A brighter future for protein structure prediction. Nature Structural Biology, 6:108–111, 1999.

    Article  Google Scholar 

  19. Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules, 22:3986–3997, 1989.

    Article  Google Scholar 

  20. Hao Li, Robert Helling, Chao Tnag, and Ned Wingreen. Emergence of preferred structures in a simple model of protein folding. Science, 273:666–669, 1996.

    Article  Google Scholar 

  21. Neil Madras and Gordon Slade. The Self-Avoiding Walk. Probability and Its Applications. Springer, 1996.

    Google Scholar 

  22. Tobias Müller and Jörg Würtz. Interfacing propagators with a concurrent constraint language. In JICSLP96 Post-conference workshop and Compulog Net Meeting on Parallelism and Implementation Technology for (Constraint) Logic Programming Languages, pages 195–206, 1996.

    Google Scholar 

  23. Britt H. Park and Michael Levitt. The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology, 249:493–507, 1995.

    Article  Google Scholar 

  24. J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proc. 12th Conf. American Assoc. Artificial Intelligence, volume 1, pages 362–367. Amer. Assoc. Artificial Intelligence, 1994.

    Google Scholar 

  25. Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin, 1995.

    Chapter  Google Scholar 

  26. R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal of Molecular Biology, 231:75–81, 1993.

    Article  Google Scholar 

  27. Ron Unger and John Moult. Local interactions dominate folding in a simple protein model. Journal of Molecular Biology, 259:988–994, 1996.

    Article  Google Scholar 

  28. A. Šali, E. Shakhnovich, and M. Karplus. Kinetics of protein folding. Journal of Molecular Biology, 235:1614–1636, 1994.

    Article  Google Scholar 

  29. Yu Xia, Enoch S. Huang, Michael Levitt, and Ram Samudrala. Ab initio construction of protein tertiary structures using a hierarchical approach. Journal of Molecular Biology, 300:171–185, 2000.

    Article  Google Scholar 

  30. Kaizhi Yue and Ken A. Dill. Forces of tertiary structural organization in globular proteins. Proc. Natl. Acad. Sci. USA, 92:146–150, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Will, S. (2001). Fast, Constraint-Based Threading of HP-Sequences to Hydrophobic Cores. In: Walsh, T. (eds) Principles and Practice of Constraint Programming — CP 2001. CP 2001. Lecture Notes in Computer Science, vol 2239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45578-7_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45578-7_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42863-3

  • Online ISBN: 978-3-540-45578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics