A Temporal Concurrent Constraint Programming Calculus

  • Catuscia Palamidessi
  • Frank D. Valencia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2239)


The tcc model is a formalism for reactive concurrent constraint programming. In this paper we propose a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and non-deterministic timed behavior. We call this tcc extension the ntcc calculus. The expressiveness of ntcc is illustrated by modeling cells, asynchronous bounded broadcasting and timed systems such as RCX controllers. We present a denotational semantics for the strongest-postcondition of ntcc processes and, based on this semantics, we develop a proof system for linear temporal properties of these processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Alvarez, J.F. Diaz, L.O. Quesada, C. Rueda, G. Tamura, F. Valencia, and G. Assayag. Integrating constraints and concurrent objects in musical applications: A calculus and its visual language. Constraints, January 2001.Google Scholar
  2. 2.
    G. Berry and G. Gonthier. The Esterel synchronous programming language: design, semantics, implementation. Science of Computer Programming, 19(2):87–152, November 1992.zbMATHCrossRefGoogle Scholar
  3. 3.
    F. de Boer, M. Gabbrielli, and M. Chiara. A temporal logic for reasoning about timed concurrent constraint programs. In TIME 01. IEEE Press, 2001.Google Scholar
  4. 4.
    F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent constraint language. Information and Computation, 1999. To appear.Google Scholar
  5. 5.
    F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent constraint programs correct. ACM Transactions on Programming Languages and Systems, 19(5):685–725, 1997.CrossRefGoogle Scholar
  6. 6.
    J.F. Diaz, C. Rueda, and F. Valencia. A calculus for concurrent processes with constraints. CLEI Electronic Journal, 1(2), December 1998.Google Scholar
  7. 7.
    M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confiuence in concurrent constraint programming. Theoretical Computer Science, 183(2):281–315, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Fredslund. The assumption architecture. Progress Report, Department of Computer Science, University of Aarhus, November 1999.Google Scholar
  9. 9.
    O. Herescu and C. Palamidessi. Probabilistic asynchronous pi-calculus. FoSSaCS, pages 146–160, 2000.Google Scholar
  10. 10.
    I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal logics. In Annals of Pure and Applied Logic, 2000.Google Scholar
  11. 11.
    H. H. Lund and L. Pagliarini. Robot soccer with LEGO mindstorms. Lecture Notes in Computer Science, 1604, 1999.Google Scholar
  12. 12.
    Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Specification. Springer, 1991.Google Scholar
  13. 13.
    R. Milner. A finite delay operator in synchronous ccs. Technical Report CSR-116-82, University of Edinburgh, 1992.Google Scholar
  14. 14.
    R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.Google Scholar
  15. 15.
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132, April 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint programming. In Proc. of the Ninth Annual IEEE Symposium on Logic in Computer Science, pages 71–80, 4-7 July 1994.Google Scholar
  17. 17.
    V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint programming. Journal of Symbolic Computation, 22(5–6):475–520, November-December 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint programming. In POPL’ 91. Proceedings of the eighteenth annual ACM symposium on Principles of programming languages, pages 333–352, 21-23 January 1991.Google Scholar
  19. 19.
    G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin, 1995.CrossRefGoogle Scholar
  20. 20.
    F. Valencia. Reactive constraint programming. Progress Report, BRICS, June 2000. Availabe via
  21. 21.
    G. Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Catuscia Palamidessi
    • 1
  • Frank D. Valencia
    • 2
  1. 1.Penn State UniversityUSA
  2. 2.BRICSUniversity of AarhusDenmark

Personalised recommendations