Skip to main content

Two-Dimensional Ultrasonic Strain Rate Measurement of the Human Heart in Vivo

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2230))

Included in the following conference series:

Abstract

In this study, the feasibility of two-dimensional strain rate estimation of the human heart in vivo is shown. To do this, ultrasonic B-mode data were captured at a high temporal resolution of 3.7 ms and processed off-line. The motion of the radio-frequency signal patterns within the two-dimensional sector image was tracked and used as the basis for strain rate estimation. Both axial and lateral motion and strain rate estimates showed a good agreement with the results obtained by more established, one-dimensional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Heimdal, A. Stoylen, H. Torp, and T. Skjaerpe. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography, 11(11):1013–1019, 1998.

    Article  Google Scholar 

  2. J. D'hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G.R. Sutherland. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. European Journal of Echocardiography, 1(3):154–170, 2000.

    Article  Google Scholar 

  3. A. Heimdal, J. D'hooge, B. Bijnens, G.R. Sutherland, and H. Torp. In vitro validation of in-plane strain rate imaging. a new ultrasound technique for evaluating regional myocardial deformation based on tissue doppler imaging. (abstract). Echocardiography, 18(8):S40, 1998.

    Google Scholar 

  4. S. Urheim, T. Edvardsen, H. Torp, B. Angelsen, and O. Smiseth. Myocardial strain by doppler echocardiography. validation of a new method to quantify regional myocardial function. Circulation, 102:1158–1164, 2000.

    Google Scholar 

  5. P.L. Castro, N.L. Greenberg, J. Drinko, M.J. Garcia, and J.D. Thomas. Potential pitfalls of strain rate imaging: angle dependency. Biomedical sciences instrumentation, 36:197–202, 2000.

    Google Scholar 

  6. I.A. Hein and W.D. O'Brien. Current time domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review. IEEE Transactions on Ultrasonics, Ferro-electrics and Frequency Control, 40(2):84–102, 1993.

    Article  Google Scholar 

  7. L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson. Imaging of the elastic properties of tissue-a review. Ultrasound in Medicine & Biology, 22(8):959–977, 1996.

    Article  Google Scholar 

  8. E.E. Konofagou and J. Ophir. A new method for estimation and imaging of lateral strains and poisson’s ratios in tissues. Ultrasound in Medicine & Biology, 24:1183–1199, 1998.

    Article  Google Scholar 

  9. J.G. Proakis and D.G. Manolakis. Digital signal processing: principles, algorithms and applications. Prentice-Hall International, 1996.

    Google Scholar 

  10. L.N. Bohs and G.E. Trahey. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Transactions on Biomedical Engineering, 38:280–286, 1991.

    Article  Google Scholar 

  11. T. Varghese, J. Ophir, and I. Cespedes. Noise reduction in elastography using temporal stretching with multicompression averaging. Ultrasound in Medicine & Biology, 22:1042–1053, 1996.

    Google Scholar 

  12. J.U. Voigt, M.F. Arnold, M. Karlsson, L. Hubbert, T. Kukulski, L. Hatle, and G.R. Sutherland. Assessment of regional longitudinal myocardial strain rate derived from doppler myocardial imaging indexes in normal and infarcted myocardium. The Journal of the American Society of Echocardiography, 13(6):588–598, 2000.

    Article  Google Scholar 

  13. M. Kowalski, T. Kukulski, F. Jamal, J. D'hooge, F. Weidemann, F. Rademakers, B. Bijnens, L. Hatle, and G.R. Sutherland. Can natural strain and strain rate quantify regional myocardial deformation? a study in healthy subjects. Ultrasound in Medicine & Biology, 27(8):1087–1097, 2001.

    Article  Google Scholar 

  14. F.E. Rademakers, M.B. Buchalter, W.J. Rogers, E.A. Zerhouni, J.L. Weisfeldt, M.L. Weiss, and B. Shapiro. Dissociation between left ventricular untwisting and filling. accentuation by catecholamines. Circulation, 85(4):1572–1581, 1992.

    Google Scholar 

  15. J.A. Vierendeels, K. Riemslagh, E. Dick, and P.R. Verdonck. Computer simulation of intraventricular flow and pressure gradients during diastole. Journal of Biomechanical Engineering, 122(6):667–674, 2000.

    Article  Google Scholar 

  16. J.U. Voigt, G. Lindenmeier, D. Werner, F.A. Flachskampf, U. Nixdor., L. Hatle, G.R. Sutherland, and W.G. Daniel. Strain rate imaging for the assessment of preload dependent changes in regional left ventricular diastolic longitudinal function. Journal of the American Society of Echocardiography, page (In Press), 2001.

    Google Scholar 

  17. C.P. Appleton and L. Hatle. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and doppler echocardiography. Echocardiography, 9:437–457, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D'hooge, J. et al. (2001). Two-Dimensional Ultrasonic Strain Rate Measurement of the Human Heart in Vivo. In: Katila, T., Nenonen, J., Magnin, I.E., Clarysse, P., Montagnat, J. (eds) Functional Imaging and Modeling of the Heart. FIMH 2001. Lecture Notes in Computer Science, vol 2230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45572-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45572-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42861-9

  • Online ISBN: 978-3-540-45572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics