Advertisement

Recovery of Proteins and Microorganisms from Cultivation Media by Foam Flotation

Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 68)

Abstract

Foaming is often present in aerated bioreactors. It is undesired, because it removes the cells and the cultivation medium from the reactor and blocks the sterile filter. However, it can be used for the recovery of proteins and microorganisms from the cultivation medium.

Keywords

Foaminess Protein foams Flotation of proteins Flotation of microorganisms Foam suppression Antifoam agents Characterization of cell surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bikerman JJ (1973) Foams. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Prins A, van’t Riet K (1987) TIBTECH 5:296Google Scholar
  3. 3.
    Cumper CWN, Alexander AE (1950) Trans Farad Soc 46:235CrossRefGoogle Scholar
  4. 4.
    Cumper CWN (1953) Trans Farad Soc 49:1360CrossRefGoogle Scholar
  5. 5.
    Kalischewsli K, Schügerl K (1979) Colloid Polym Sci 257:1099CrossRefGoogle Scholar
  6. 6.
    Avrami M (1941) J Chem Phys 9:177CrossRefGoogle Scholar
  7. 7.
    Kalischewski K, Bumbullis W, Schügerl K (1979) Eur J Appl Microbiol Biotechnol 7:21CrossRefGoogle Scholar
  8. 8.
    Graham DE, Phillips MC (1976) Proc Symp on Foams, Brunel University. Akers RJ (ed) Academic Press, p 237Google Scholar
  9. 9.
    Tanford Ch, Buzzel JG (1955) J Am Chem Soc 77:6421CrossRefGoogle Scholar
  10. 10.
    Kotsaridu M, Gehle R, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 18:60CrossRefGoogle Scholar
  11. 11.
    Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247CrossRefGoogle Scholar
  12. 12.
    Luck W (1964) Fortschr Chem Forschung 4:653CrossRefGoogle Scholar
  13. 13.
    Luck W (1976) Top Curr Chem 64:113Google Scholar
  14. 14.
    Bumbullis W, Kalischewski K, Schügerl K (1979) Eur J Appl Microbiol Biotechnol 7:147CrossRefGoogle Scholar
  15. 15.
    Bumbullis W, Schügerl K (1979) Eur J Appl Microbiol Biotechnol 8:17CrossRefGoogle Scholar
  16. 16.
    Mokrushin SG, Zhidkova LG (1959) Colloid J USSR 21:323Google Scholar
  17. 17.
    Bumbullis W, Schügerl K (1981) Eur J Appl Microbiol Biotechnol 11:106CrossRefGoogle Scholar
  18. 18.
    Mann JA, Hansen RS (1963) J Colloid Sci 18:757,805CrossRefGoogle Scholar
  19. 19.
    Lucassen J, Tempel van den (1972) J Colloid Interface Sci 41:491CrossRefGoogle Scholar
  20. 20.
    Gouda JH, Joos P (1975) Chem Eng Sci 30:521CrossRefGoogle Scholar
  21. 21.
    Bumbullis W, Kalischewski K, Schügerl K (1981) Eur J Appl Microbiol Biotechnol 11:110CrossRefGoogle Scholar
  22. 22.
    Wolfes H, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 17:371CrossRefGoogle Scholar
  23. 23.
    Gifford WA, Sciven LE (1971) Chem Eng Sci 26:287CrossRefGoogle Scholar
  24. 24.
    Szarka L, Magyar K (1969) Biotechnol Bioeng 11:701CrossRefGoogle Scholar
  25. 25.
    Buchholz H, Kalischewski K, Schügerl K (1979) Eur J Appl Microbiol Biotechnol 7:321CrossRefGoogle Scholar
  26. 26.
    König B, Kalischewski K, Schügerl K (1979) Eur J Appl Microbiol Biotechnol 7:251CrossRefGoogle Scholar
  27. 27.
    Kotsaridu M, Müller B, Pfanz V, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 17:258CrossRefGoogle Scholar
  28. 28.
    Angrick M (1980) Chemie in unserer Zeit 5:149CrossRefGoogle Scholar
  29. 29.
    Vardar-Sukan F (1998) Biotechnol Adv 16:913CrossRefGoogle Scholar
  30. 30.
    Noble J, Collins M, Porter N, Varley J (1994) Biotechnol Bioeng 44:801CrossRefGoogle Scholar
  31. 31.
    Ghildyal NP, Lonsane BK, Karanth NG (1988) Adv Appl Microbiol 33:173CrossRefGoogle Scholar
  32. 32.
    Chisti Y (1993)Bioproc Eng 9:191CrossRefGoogle Scholar
  33. 33.
    Viesturs UE, Kristapsons MZ, Levitans ES (1982) Adv Biochem Eng 21:169Google Scholar
  34. 34.
    Solomon GL (1967) Proc Biochem 3:47Google Scholar
  35. 35.
    Schügerl K (1985) Process Biochem August, 122Google Scholar
  36. 36.
    Ross S (1950) The inhibition of foaming, Renessealer Polytechn Institut Bull 63Google Scholar
  37. 37.
    Robinson JV, Woods WWJ (1948) J Soc Chem Ind (London) 67:97Google Scholar
  38. 38.
    Evans JI, Hall J (1971) Proc Biochem 6:(4)Google Scholar
  39. 39.
    Adler I, Buchholz J, Voigt R, Wittler R, Schügerl K (1980) Eur J Appl Microbiol Biotechnol 9:249CrossRefGoogle Scholar
  40. 40.
    Adler I, Diekmann J, Hartke W, Hecht V, Rohn F, Schügerl K (1980) Eur J Microbiol Biotechnol 10:171CrossRefGoogle Scholar
  41. 41.
    Adler I, Eberhard U, Habermann WD, Schügerl K (1980) Eur J Microbiol Biotechnol 12:212CrossRefGoogle Scholar
  42. 42.
    Sie TL, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 17:221CrossRefGoogle Scholar
  43. 43.
    Al-Masry WA (1999) Chem Eng Processing 38:197CrossRefGoogle Scholar
  44. 44.
    Schügerl K, Lücke J, Lehmann J, Wagner F (1978) Adv Biochem Eng 8:63Google Scholar
  45. 45.
    Vardar F, Lilly MD (1982) Eur J Appl Microbiol Biotechnol 14:203CrossRefGoogle Scholar
  46. 46.
    Nyiri L, Lengyel ZL (1965) Antibiot Advan Res Prod Clin Use Proc Congr Prague 729Google Scholar
  47. 47.
    Lengyel ZL, Nyiri L (1966) Biotechnol Bioeng 8:337CrossRefGoogle Scholar
  48. 48.
    Bröring S, Fischer J, Korte T, Sollinger S, Lübbert A (1991) Can J Chem Eng 69:1227CrossRefGoogle Scholar
  49. 49.
    Lübbert A (1992) J Biotechnol 25:145CrossRefGoogle Scholar
  50. 50.
    Schügerl K (1996) Bubble column and airlift bioreactors. In: Bioreactor engineering. Course notes. EFB Bioreactor performance, p 22Google Scholar
  51. 51.
    Koch V, Rüffer H-M, Schügerl K, Innersberger E, Menzel H, Weis J (1995) Process Biochem 30:435CrossRefGoogle Scholar
  52. 52.
    Berovic M, Cimerman A (1979) Eur J Appl Microbiol 7:313CrossRefGoogle Scholar
  53. 53.
    Zhang S, Handa-Corrigan A, Spier RE (1992) J Biotechnol 25:289CrossRefGoogle Scholar
  54. 54.
    van der Pol LA, Bonarius D, Wouw van de G, Tramper J (1993) Biotechnol Progr 9:504CrossRefGoogle Scholar
  55. 55.
    Handa-Corrigan A, Emery AN, Spier RE (1989) Enzyme Microbiol Technol 11:230CrossRefGoogle Scholar
  56. 56.
    Jöbses I, Martens D, Tramper J (1991) Biotechnol Bioeng 37:484CrossRefGoogle Scholar
  57. 57.
    Wills BA (1985) Mineral processing technology. Pergamon Press, New YorkGoogle Scholar
  58. 58.
    Matis KA (1994) Flotation science and engineering. Marcel Dekker, New YorkGoogle Scholar
  59. 59.
    Schulze H-J (1984) Physicochemical elementary processes in flotation. Elsevier, AmsterdamGoogle Scholar
  60. 60.
    Loewenberg M, Davis RU (1994) Chem Eng Sci 49:3923CrossRefGoogle Scholar
  61. 61.
    Rousseau RW (ed) (1987) Handbook of separation process technology. Wiley, New YorkGoogle Scholar
  62. 62.
    Verrall MS, Hudson MJ (eds) (1987) Separations for biotechnology. Ellis Horwood, ChichesterGoogle Scholar
  63. 63.
    Pyle DL (ed) (1994) Separations for biotechnology 3. SCI, CambridgeGoogle Scholar
  64. 64.
    Li NN, Strathmann H (eds) (1987) Separation technology. A.I.Ch.E. New YorkGoogle Scholar
  65. 65.
    Lemlich R (ed) (1972) Adsorptive bubble separation technique. Academic Press, New YorkGoogle Scholar
  66. 66.
    Wilson DJ, Clark AN (1987) Bubble foam separation in waste treatment. In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, chap 17Google Scholar
  67. 67.
    Schnepf RW, Gader EL (1959) J Biochem Microbiol Technol Eng 1:1CrossRefGoogle Scholar
  68. 68.
    Ahmed SI (1975) Sep Sci 10:673CrossRefGoogle Scholar
  69. 69.
    Ahmed SI (1975) Sep Sci 10:689CrossRefGoogle Scholar
  70. 70.
    Gehle R, Schügerl K (1984) Appl Microbiol Biotechnol 20:133CrossRefGoogle Scholar
  71. 71.
    Uraizee F, Narsimhan G (1990) Enzyme Microb Technol 12:315CrossRefGoogle Scholar
  72. 72.
    Brown AK, Kaul A, Varley J (1999) Biotechnol Bioeng. 62:278CrossRefGoogle Scholar
  73. 73.
    Brown AK, Kaul A, Varley J (1999) Biotechnol Bioeng 62:291CrossRefGoogle Scholar
  74. 74.
    Bikermann JJ (1938) Trans Faraday Soc 34:634CrossRefGoogle Scholar
  75. 75.
    Brown L, Narsimhan G, Wankat PC (1990) Biotechnol Bioeng 36:947CrossRefGoogle Scholar
  76. 76.
    Ostermaier K, Dobiás B (1985) Colloids Surf 14:199Google Scholar
  77. 77.
    Liu Z-h, Liu Z, Shen Z, Ding F, Yuan N (1997) Bioseparation 6:353Google Scholar
  78. 78.
    Sarkar P, Bhattacharaya P, Mukherjea RN, Mukherjea M (1987) Biotechnol Bioeng 29:934CrossRefGoogle Scholar
  79. 79.
    Miranda EA, Berglund KA (1993) Biotechnol Progr 9:41Google Scholar
  80. 80.
    Zheng L, Zhihong L, Wang D, Ding F, Yuan N (1998) Bioseparation 7:167CrossRefGoogle Scholar
  81. 81.
    Varley J, Ball SK (1994) In: Pyle DL (ed) Separations for biotechnology 3. SCI, London, p525Google Scholar
  82. 82.
    Graham DE, Phillips MC (1979) J Colloid Interface Sci 70:403CrossRefGoogle Scholar
  83. 83.
    Graham DE, Phillips MC (1979) J Colloid Interface Sci 70:415CrossRefGoogle Scholar
  84. 84.
    Miles GD, Shedlovski L, Ross J (1945) J Phys Chem 49:93CrossRefGoogle Scholar
  85. 85.
    Jacobi WM, Woodcock KE, Grove CS (1956) Ind Eng Chem 48:2049CrossRefGoogle Scholar
  86. 86.
    Steiner L, Hunkeler R, Hartland S (1977) Trans Inst Chem Eng 55:153Google Scholar
  87. 87.
    Desai D, Kumar R (1982) Chem Eng Sci 37:1361CrossRefGoogle Scholar
  88. 88.
    Desai D, Kumar R (1983) Chem Eng Sci 38:1525CrossRefGoogle Scholar
  89. 89.
    Desai D, Kumar R (1984) Chem Eng Sci 39:1559CrossRefGoogle Scholar
  90. 90.
    Hartland S, Barber AD (1974) Trans Inst Chem Eng 52:43Google Scholar
  91. 91.
    Lemlich R (1978) Ind Eng Chem Fundamentals 17:89CrossRefGoogle Scholar
  92. 92.
    Monsalve A, Schechter RS (1984) J Colloid Interface Sci 97:327CrossRefGoogle Scholar
  93. 93.
    Callaghan IC, Lawrence FT, Melton PM (1986) Coll Polymer Sci 264:423CrossRefGoogle Scholar
  94. 94.
    Krotov VV (1984) Colloid J (Russ) 48:913Google Scholar
  95. 95.
    Uraizee F, Narsimhan G (1995) Sep Sci Technol 30:847CrossRefGoogle Scholar
  96. 96.
    Uraizee F, Narsimhan G (1996) Biotechnol Bioeng 51:384CrossRefGoogle Scholar
  97. 97.
    Dognon A, Dumonte A (1941) CR Soc Biol 135:884Google Scholar
  98. 98.
    Dognon A (1942) Acta Scand Ind 932:157Google Scholar
  99. 99.
    Hopper SH, McGowen MC (1952) J Am Water Works Assoc 44:719Google Scholar
  100. 100.
    Grieves RB, Wang SL (1966) Biotechnol Bioeng 8:323CrossRefGoogle Scholar
  101. 101.
    Bretz HW, Wang SL, Grieves RB (1966) Appl Microbiol 15:778Google Scholar
  102. 102.
    Rubin AJ, Cassel EA, Henderson O, Johnson JD, Lamb JC (1966) Biotechnol Bioeng 8:135CrossRefGoogle Scholar
  103. 103.
    Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Appl Microbiol 10:169Google Scholar
  104. 104.
    Kalyuzhny MV, Petrushko GM, Novikova GP (1965) Microbiologica 34:918Google Scholar
  105. 105.
    Boyles WA, Lincoln RE (1958) Appl Microbiol 6:327Google Scholar
  106. 106.
    Desmaison GU, Schügerl K (1980) Chem Ing Techn 52:885Google Scholar
  107. 107.
    Gaudin AM, Mular AL, O’Connor RF (1960) Appl Microbiol 8:84,91Google Scholar
  108. 108.
    Sadowski Z, Golab Z, Smith RW (1991) Biotechnol Bioeng 37:955CrossRefGoogle Scholar
  109. 109.
    Matis KA, Zouboulis AI (1994) Biotechnol Bioeng 44:354CrossRefGoogle Scholar
  110. 110.
    Ohmura N, Kitamura K, Saiki H (1993) Biotechnol Bioeng 41:671CrossRefGoogle Scholar
  111. 111.
    Hashim MA, SenGupta B, Subramarian MB (1995) Bioseparation 5:167Google Scholar
  112. 112.
    Honeycutt SS, Wallis DA, Sebba F (1983) Biotechnol Bioeng 13:567Google Scholar
  113. 113.
    Viehweg H, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 17:96CrossRefGoogle Scholar
  114. 114.
    Bahr KH, Schügerl K (1988) In: Li NN, Strathmann H (eds) Separation technology. Engineering Foundation, New York, p 577Google Scholar
  115. 115.
    Bahr KH, Weisser H, Schügerl K (1991) Enzyme Microb Technol 13:747CrossRefGoogle Scholar
  116. 116.
    Bahr KH, Schügerl K (1992) Chem Eng Sci 47:11CrossRefGoogle Scholar
  117. 117.
    Gehle R, Sie TL, Kramer T, Schügerl K (1991) J Biotechnol 17:147CrossRefGoogle Scholar
  118. 118.
    Hill GA, Robinson CW (1988) Biotechnol Lett 10:815CrossRefGoogle Scholar
  119. 119.
    Parthasathy S, Das TR, Kumar R, Gopalakrishnan R (1988) Biotechnol Bioeng 32:174CrossRefGoogle Scholar
  120. 120.
    Sie TW, Schügerl K (1989) Swiss Biotech 7:41Google Scholar
  121. 121.
    Husband DL, Masliyah JH, Gray MR (1994) Can J Chem Eng 72:840CrossRefGoogle Scholar
  122. 122.
    Tybussek R, Linz F, Schügerl K, Moses N, Léonard AJ, Rouxhet PG (1994) Appl Microbiol Biotechnol 44:13CrossRefGoogle Scholar
  123. 123.
    Wang S, Kretzmer G, Schügerl K (1994) Appl Microbiol Biotechnol 41:537CrossRefGoogle Scholar
  124. 124.
    Buchholz H, Luttmann R, Zakrzewski W, Schügerl K (1981) Eur J Appl Microbiol Biotechnol 11:89CrossRefGoogle Scholar
  125. 125.
    Parthasarathy S, Das TR, Kumar R (1988) Biotechnol Bioeng 32:174CrossRefGoogle Scholar
  126. 126.
    Ramani MV, Kumar R, Gandi KS (1993) Chem Eng Sci 48:1819CrossRefGoogle Scholar
  127. 127.
    Desai D, Kumar R (1983) Chem Eng Sci 38:1525CrossRefGoogle Scholar
  128. 128.
    Aris R, Amundson NR (1973) Mathematical methods in chemical engineering. Prentice Hall, Engelwood Cliffs, NJGoogle Scholar
  129. 129.
    Amory DE, Moses N, Hermesse MP, Leonard AJ, Rouxhet PG (1988) FEMS Microbiol Lett 49:197CrossRefGoogle Scholar
  130. 130.
    Moses N, Leonard AJ, Rouxhet PG (1988) Biochim Biophys Acta 945:324CrossRefGoogle Scholar
  131. 131.
    Arnold WN (1981) Physical aspects of the yeast cell envelope. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics and ultrastructure, vol 1. CRC Press, p 25Google Scholar
  132. 132.
    Andrews GF, Fonta JP, Marrotta E, Stroeve P (1984) Chem Eng J 29:B39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  1. 1.Institute for Technical ChemistryUniversity of HannoverHannoverGermany

Personalised recommendations