Skip to main content

Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 68))

Abstract

A survey is given of the main classes of bacteriocins, produced by lactic acid bacteria: I. lantibiotics II. small heat-stable non-lanthionine containing membrane-active peptides and III. large heat-labile proteins. First, their mode of action is detailed, with emphasis on pore formation in the cytoplasmatic membrane. Subsequently, the molecular genetics of several classes of bacteriocins are described in detail, with special attention to nisin as the most prominent example of the lantibiotic-class. Of the small non-lanthionine bacteriocin class, the Lactococcus lactococcins, and the Lactobacillus sakacin A and plantaricin A-bacteriocins are discussed. The principles and mechanisms of immunity and resistance towards bacteriocins are also briefly reported. The biosynthesis of bacteriocins is treated in depth with emphasis on response regulation, post-translational modification, secretion and proteolytic activation of bacteriocin precursors. To conclude, the role of the leader peptides is outlined and a conceptual model for bacteriocin maturation is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Vuyst L, Vandamme EJ (eds) (1994) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Blackie Academic & Professional, London

    Google Scholar 

  2. Rose AH (1982) Fermented Foods. Academic Press, New York

    Google Scholar 

  3. Reed G (1983) Food and Feed Production with Microorganisms. Verlag Chemie, Deerfield Beach, Florida

    Google Scholar 

  4. Steinkraus KH (1983) Handbook of Indigenous Fermented Foods. Marcel Dekker, New York

    Google Scholar 

  5. Wood BJB (1985) Microbiology of Fermented Foods. Elsevier, London

    Google Scholar 

  6. Gilliland SE (1986a) Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, Florida

    Google Scholar 

  7. Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12: 253–271

    Article  Google Scholar 

  8. Gilliland SE (1986b) Role of starter culture bacteria in food preservation. In: Gilliland SE (ed) Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, Florida, pp 175–185

    Google Scholar 

  9. Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 12: 207–220

    Google Scholar 

  10. Schillinger U (1990) Bacteriocins of lactic acid bacteria. In: Bills DD, Kung SD (eds) Biotechnology and Food Safety. Burrerworth-Heinemann, Boston, pp 55–74

    Google Scholar 

  11. Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12: 221–237

    Article  CAS  Google Scholar 

  12. Lloyd AG, Drake JJP (1975) Problems posed by essential food preservatives. Br Med bull. 31: 214–219

    CAS  Google Scholar 

  13. Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57:1683–1688

    CAS  Google Scholar 

  14. Marteau P, Rambeaud J-C (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12: 207–220

    Article  CAS  Google Scholar 

  15. Gerritse K, Posno M, Schellekens M, Boersma WJA, Claassen E (1990) Oral administration of TNP-Lactobacillus conjugates in mice: a model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res Microbiol 141: 955–962

    Article  CAS  Google Scholar 

  16. Norton PM, Wells JM, Brown HWG, Macpherson AM, Le Page RWF (1997) Protection against tetanus toxin in mice nasally immunized with recombant Lactobacillus lactis expressing tetanus toxin fragment C. Vaccine 15: 616–649

    Article  CAS  Google Scholar 

  17. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40: 722–756

    CAS  Google Scholar 

  18. Gratia A (1925) Sur un remarquable example d’antagonisme entre souches de colibacille. CR Soc Biol 93:1040–1041

    Google Scholar 

  19. Frédericq P (1948) Actions antibiotiques reciproques chez les Enterobacteriaceae. Rev Bel Pathol Med Exp 19:1–107

    Google Scholar 

  20. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  21. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 39–86

    CAS  Google Scholar 

  22. Jung G, Sahl H-G (1991) Nisin and Novel Lantibiotics, ESCOM Science Publishers BV., Leiden

    Google Scholar 

  23. Baba T, Schneewind O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol 6: 66–71

    Article  CAS  Google Scholar 

  24. Rogers LA (1928) The inhibitory effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16: 321–325

    CAS  Google Scholar 

  25. Whitehead HR (1933) A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem J 27:1793–1800

    CAS  Google Scholar 

  26. Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2: 5–7

    Article  CAS  Google Scholar 

  27. Hurst A (1981) Nisin.Adv Appl Microbiol 27: 85–123

    Article  CAS  Google Scholar 

  28. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek

    Google Scholar 

  29. Kaletta C, Entian K-D (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171:1597–1601

    CAS  Google Scholar 

  30. Piard JC, Delorme F, Giraffa G, Commissaire J, Desmazeaud M (1990) Evidence for a bacteriocin produced by lactococcus lactis CNRZ 481. Neth Milk Dairy J 44: 143–158

    CAS  Google Scholar 

  31. Møfrtveldt CI, Nes IF (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J Gen Microbiol 136:1601–1607

    Google Scholar 

  32. Horn N, Swindell S, Dodd H, Gasson M (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet 228:129–135

    Article  CAS  Google Scholar 

  33. Møfrtveldt CI, Nissen-Meyer J, Sletten K, Nes IF (1991) Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol 57:1829–1834

    Google Scholar 

  34. Harris LJ, Fleming HP, Klaenhammer TR (1992) Developments in nisin research. Food Res Int 25: 57–66

    Article  CAS  Google Scholar 

  35. Stoffels G, Nes IF, Gudmundsdottir A (1992) Isolation and properties of a bacteriocinproducing Carnobacterium piscicola isolated from fish. J Appl Bacteriol 73: 309–316

    CAS  Google Scholar 

  36. Stoffels G, Nissen-Meyer J, Gudmundsdottir A, Sletten K, Holo H, Nes IF (1992) Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol 58:1417–1422

    CAS  Google Scholar 

  37. Rauch PJG, Beerthuyzen MM, De Vos WM (1990) Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res 18: 4253–4254

    Article  CAS  Google Scholar 

  38. Paik SH, Chakicherla A, Hansen JN (1998) Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of Sublancin 168, a Novel lantibiotic Produced by Bacillus subtilis 168. J Biol Chem 273: 23134–23142

    Article  CAS  Google Scholar 

  39. Jung G (1991) Lantibiotics: a survey. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM Science, Leiden, pp 1–34

    Google Scholar 

  40. De Vos WM,K uipers OP, van der Meer JR, Siezen RJ (1995b) Maturation pathway of nisin and other lantibiotics: post-translational modified antimicrobial peptides exported by Gram-positive bacteria. Mol Microbiol 17: 427–437

    Article  Google Scholar 

  41. Havarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram positive bacteria. Microbiology 140: 2383–2389

    Article  CAS  Google Scholar 

  42. Hastings JW, Sailer M, Johnson K, Rou KK, Vederas JC, Stiles ME (1991) Characterization of leucocin A UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173: 7491–7500

    CAS  Google Scholar 

  43. Holck A, Axelsson L, Birkeland S-E, Aukrust T, Blom H (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol 138: 2715–2720

    CAS  Google Scholar 

  44. Lozano JCN, Meyer JN, Sletten K, Pelaz C, Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pedicococcus acidilactici. J Gen Microbiol138: 1985–1990

    Google Scholar 

  45. Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocin curvacin A from Lactobacillus curvatus LTH 1174 and sakacin P from L.sa ke LTH673. Syst Appl Microbiol 15: 460–468

    CAS  Google Scholar 

  46. van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1991a) Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl Environ Microbiol 57: 492–498

    Google Scholar 

  47. Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174: 5686–5692

    CAS  Google Scholar 

  48. Allison GE, Frémaux C, Klaenhammer TR (1994) Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176: 2235–2241

    CAS  Google Scholar 

  49. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum Cll. J Bacteriol 178: 4472–4483

    CAS  Google Scholar 

  50. Leer RL, van der Vossen JMBM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by lactobacillus acidophilus. Microbiology 141:1629–1635

    Article  CAS  Google Scholar 

  51. Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME (1995) A signal peptide-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177: 3143–3149

    CAS  Google Scholar 

  52. Metha AM, Patel KA, Dave PJ (1983) Isolation and purification of an inhibitory protein from Lactobacillus acidophilus ACT. Microbiology 37: 37–43

    Google Scholar 

  53. Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined, bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167: 439–446

    CAS  Google Scholar 

  54. Joerger MC, Klaenhammer TR (1990) Cloning, expression and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J JBacteriol 172: 6339–6347

    CAS  Google Scholar 

  55. Toba T, Yoshioka E, Itoh T (1991) Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Lett Appl Microbiol 12:106–108

    Article  CAS  Google Scholar 

  56. Vaughan EE, Daly C, Fitzgerald GF (1992) Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol 73: 299–308

    CAS  Google Scholar 

  57. Upreti GC, Hinsdill RD (1973) Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 4: 487–494

    CAS  Google Scholar 

  58. Upreti GC, Hinsdill RD (1975a) Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 7:139–145

    CAS  Google Scholar 

  59. Lewus CB, Sun S, Montville TJ (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58: 143–149

    CAS  Google Scholar 

  60. Jiménez-Dïaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL, Piard J-C (1993) Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59:1416–1424

    Google Scholar 

  61. Schved F, Lalazar A, Henis Y, Juven BJ (1993) Purification, partial characterization and plasmid linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilacitici. J Appl Bacteriol 74: 67–77

    CAS  Google Scholar 

  62. Venema K, Venema G, Kok J (1995) Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol 3: 299–304

    Article  CAS  Google Scholar 

  63. Davey GP (1981) Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346. NZJ Dairy Sci Technol 16:187–190

    CAS  Google Scholar 

  64. Zajdel JK, Ceglowski P, Dobrzanski WT (1985) Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris. Appl Environ Microbiol 49: 969–974

    CAS  Google Scholar 

  65. van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN and Abee T (1991b) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173: 7934–7941

    Google Scholar 

  66. Bhunia AK, Johnson MC, Ray B, Kalchayanand N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70: 25–33

    CAS  Google Scholar 

  67. Sahl H-G (1991) Pore formation in bacterial membranes by cationic lantibiotics. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM Science, Leiden, pp 347–358

    Google Scholar 

  68. Upreti GC, Hinsdill RD (1975b) Production and mode of action of lactocin 27 bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 7:139–145

    CAS  Google Scholar 

  69. Hastings JW, Stiles ME (1991) Antibiosis of Leuconostoc gelidum isolated from meat. J Appl Bacteriol 70:127–134

    CAS  Google Scholar 

  70. Kok J, Holo H, van Belkum MJ, Haandrikman AJ, Nes IF (1993) Non-nisin bacteriocins in lactococci: biochemistry, genetics and mode of action. In: Hoover D, Steenson L (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 121–150

    Google Scholar 

  71. Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN, Venema G (1993) Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl Environ Microbiol 59:1041–1048

    CAS  Google Scholar 

  72. Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJM (1996) Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178: 600–605

    CAS  Google Scholar 

  73. Christensen DP, Hutkins RW (1992) Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici. Appl Environ Microbiol 58: 3312–3315

    CAS  Google Scholar 

  74. Ray B, Hoover DG (1993) Pediocins. In: Hoover DG, Steenson LR (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 181–210

    Google Scholar 

  75. Chikindas ML, Garcia-Garcera MJ, Driessen AJM, Ledeboer AM, Nissen-Meyer N, Nes IF, Abee T, Konings WN, Venema G (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophylic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59: 3577–3584

    CAS  Google Scholar 

  76. Kaiser ET (1987) Design of amphiphilic peptides. In: Alan R (ed) Protein Engineering. Liss, New York, pp 193–199

    Google Scholar 

  77. Frémaux C, Ahn C, Klaenhammer TR (1993) Molecular analysis of the lactacin F operon. Appl Environ Microbiol 59: 3906–3915

    Google Scholar 

  78. Salomon RA, Farias RN (1993) The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175: 7741–7742

    CAS  Google Scholar 

  79. Salomon RA, Farias RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177: 3323–3325

    CAS  Google Scholar 

  80. Moeck GS, Fasly Bazzaz BS, Gras MF, Ravi TS, Ratcliffe MJH, Coulton JW (1994) Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 176: 4250–4259

    CAS  Google Scholar 

  81. Gross E, J, Morell J (1971) The stucture of nisin. J Am Chem Soc 93: 4634–4635

    Article  CAS  Google Scholar 

  82. Sahl H-G, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230: 827–833

    Article  CAS  Google Scholar 

  83. Mulders JW, Boerrigter LJ, Rollema HS, Siezen RJ, De Vos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201: 581–584

    Article  CAS  Google Scholar 

  84. Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263: 9508–9514

    CAS  Google Scholar 

  85. Reis M, Sahl H-G (1991) Genetic analysis of the producer self-protection mechanism (‘immunity’) against Pep5. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM, Leiden, pp 320–331

    Google Scholar 

  86. Chung YJ, Steen MT, Hansen JN (1992) The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homologue of the hemolysin B transport protein. J Bacteriol 174:1417–1422

    CAS  Google Scholar 

  87. Klein C, Kaletta C, Schnell N, Entian K-D (1992) Analysis of genes involved in the biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58:132–142

    CAS  Google Scholar 

  88. Schnell N, Engelke G,A ugustin J, Rosenstein R,U ngermann V, Götz F, Entian K-D (1992) Analysis of genes involved in the biosynthesis of the lantibiotic epidermin. Eur J Biochem 204: 57–68

    Article  CAS  Google Scholar 

  89. Klein C, Kaletta C, Entian K-D (1993) Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59: 296–303

    CAS  Google Scholar 

  90. Schnell N, Entian K-D, Schneider U, Götz F, Zähner H, Kellner R, Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276–278

    Article  CAS  Google Scholar 

  91. Steen MT, Chung YJ, Hansen JN (1991) Characterization of the nisin gene as a part of a polycistronic operon in the chromosome of Lactococcus lactis ATCC 11454. Appl Environ Microbiol 57:1181–1188

    CAS  Google Scholar 

  92. Kuipers OP, Beerthuyzen MM, Siezen JR, De Vos W (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of nisin immunity. Eur J Biochem 216: 281–291

    Article  CAS  Google Scholar 

  93. Siezen RJ, Kuipers OP, de Vos WM (1996) Comparison of lantibiotics geneclu sters and encoded proteins. Antonie van Leeuwenhoek 69:171–184

    Article  CAS  Google Scholar 

  94. Gasson MJ (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712. FEMS Microbiol Lett 21: 7–10

    Article  CAS  Google Scholar 

  95. Dodd HM, Horn N, Gasson MJ (1990) Analysis of the genetic determinant for production of the petpide antibiotic nisin. J Gen Microbiol 136: 555–566

    CAS  Google Scholar 

  96. Rodriguez JM, Dodd HM (1996) Genetic determinants for the biosynthesis of nisin, a bacteriocin produced by Lactobacillus lactis. Microbiologia SEM 12: 61–74

    CAS  Google Scholar 

  97. Rauch PJG, De Vos WM (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 174:1280–1287

    CAS  Google Scholar 

  98. Rauch PJG, De Vos WM (1994) Identification and characterization of the genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol 176: 2165–2171

    CAS  Google Scholar 

  99. Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P (1989) Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J 8: 2425–2433

    CAS  Google Scholar 

  100. Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian K-D (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58: 3730–3743

    CAS  Google Scholar 

  101. van der Meer FR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos W (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 174: 2152–2159

    Google Scholar 

  102. van der Meer FR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, De Vos WM (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem 269: 3555–3562

    Google Scholar 

  103. De Vos WM, Beerthuyzen MM, Luesink EL, Kuipers OP (1995a) Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 617–625

    Google Scholar 

  104. Siegers K, Entian K-D (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1081–1089

    Google Scholar 

  105. Fath MJ, Kolter R (1993) ABC exporters: bacterial exporters. Microbiol Rev 57: 995–1017

    CAS  Google Scholar 

  106. Qiao M, Saris PE (1996) Evidence for a role of Nis T in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbil Lett 144: 89–93

    Article  CAS  Google Scholar 

  107. Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian K-D (1994) Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60: 814–825

    CAS  Google Scholar 

  108. Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive response in bacteria. Microbiol Rev 53: 450–490

    CAS  Google Scholar 

  109. Garido MC, Herrero M, Kolter R, Moreno F (1988) The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBO J 7:1853–1862

    Google Scholar 

  110. Klein C, Entian K-D (1994) Genes involved in self-protection against the antibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60: 2793–2801

    CAS  Google Scholar 

  111. Pugsley AP (1988) Protein secretion across the outer membrane of Gram-negative bacteria. In: Das RA, Robins PW (eds) Protein transfer and organelle biogenesis. Academic Press, Orlando, pp 607–652

    Google Scholar 

  112. Song HY, Cramer WA (1991) Membrane topography of ColEI gene products: the immunity protein. J Bacteriol 173: 2935–2943

    CAS  Google Scholar 

  113. Immonen T, Ye S, Ra R, Quia M, Paulin L, Saris PEJ (1991) The codon usage of the nisZ operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. DNA sequence 5: 203–218

    Article  Google Scholar 

  114. De Vos WM, Simmons GFM (1994) Gene cloning and expression systems in lactococci. In: Gasson MJ, De Vos WM (eds) Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic & Professional, Glasgow, pp 52–97

    Google Scholar 

  115. Ra SR, Qiao M, Immonen T, Pujana I, Saris PEJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 142:1281–1288

    Article  CAS  Google Scholar 

  116. Ra SR, Saris PEJ (1995) Characterization of procaryotic mRNAs by RT-PCR. Biotechniques 18: 792–795

    CAS  Google Scholar 

  117. Piard JC, Muriana PM, Desmazeaud PJ, Klaenhammer TR (1992) Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ Microbiol 58: 279–284

    CAS  Google Scholar 

  118. Rince A, Dufour A, Le Pogam S, Thuault D, Bourgeois CM, Le Pennec JP (1994) Cloning, expression and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from lactococcus lactis subsp. lactis. Appl Environ Microbiol 60:1652–1657

    CAS  Google Scholar 

  119. Rince A, Dufour A, Uguen P, Le Pennec JP, Haras D (1997) Characterization of the lacticin 481 operon: the Lactococcus lactis genes IctF, IctE and IctG encode a pupative ABC transporter involved in bacteriocin immunity. Appl Environ Microbiol 63: 4252–4260

    CAS  Google Scholar 

  120. Nes IF, Tagg JR (1996) Novel lantibiotics and their prepeptides. Antonie van Leeuwenhoek 69: 89–97

    Article  CAS  Google Scholar 

  121. Skaugen M, Abildgaard CI, Nes IF (1997) Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S.Mol Gen Genet 253: 674–686

    CAS  Google Scholar 

  122. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176: 7335–7344

    CAS  Google Scholar 

  123. Siezen RJ, De Vos WM, Leunissen JAM, Dijkstra BW (1995) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4: 719–737

    Article  Google Scholar 

  124. Frémaux C, Héchard Y, Cienatiempo Y (1995) Mesentericin Y105 gene cluster in Leuconostoc mesenteroides Y105. Microbiology 141:1637–1645

    Article  Google Scholar 

  125. Holo H, Nilssen Ø, Nes IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris. Isolation and characterization of the protein and its gene. J Bacteriol 173: 3879–3887

    CAS  Google Scholar 

  126. Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL (1992) Molecular analysis of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis Biovar diacetylactis WM4. Appl Environ Microbiol 58:1952–1961

    CAS  Google Scholar 

  127. van Belkum MJ (1994) Lactococcins, bacteriocins of Lactococcus lactis. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Blackie Academic & Professional, London, pp 301–318

    Google Scholar 

  128. Nes IF, Håvarstein LS, Holo H (1995) Genetics of non-lantibiotic bacteriocins. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 645–651

    Google Scholar 

  129. Van Belkum MJ, Stiles ME (1995) Molecular characterization of the genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 61: 3573–3579

    Google Scholar 

  130. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MF, Toonen MY, Walker SA, Zoetmulder LCM, Vandenberg PA (1992) Cloning, expression and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PACl.0. Appl Environ Microbiol 58: 2360–2367

    CAS  Google Scholar 

  131. Bukhtiyarova M, Yang R, Ray B (1994) Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative strain. Appl Environ Microbiol 60: 3405–3408

    CAS  Google Scholar 

  132. Venema K, Kok J,M arugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas L (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC 1.0 PedB is the isnmunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17: 515–522

    Article  CAS  Google Scholar 

  133. Axelsson L, Holck A (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177: 2125–2137

    CAS  Google Scholar 

  134. Diep DB, Håvarstein LS, Nissen-Meyer J, Nes IF (1994) The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C ll, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60:160–166

    CAS  Google Scholar 

  135. van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1989) Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol 55:1187–1191

    Google Scholar 

  136. van Belkum MJ, Kok J, Venema G (1992) Cloning, sequencing and expression in Escherichia coli of IcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol 58:572–577

    Google Scholar 

  137. Delepelaire P, Wandersman C (1990) Protein secretion in Gram-negative bacteria. J Biol Chem 265:17118–17125

    CAS  Google Scholar 

  138. Harmon KS, McKay LL (1987) Restriction enzyme analysis of lactose and bacteriocin plasmids from Streptococcus lactis subsp. diacetylactis WM4 and cloning of BclII fragments coding for bacteriocin production. Appl Environ Microbiol 53:1171–1174

    CAS  Google Scholar 

  139. Randall LL, Hardy SJS, Thom JR (1987) Export of protein: a biochemical view. Annu Rev Microbiol 41: 507–541

    Article  CAS  Google Scholar 

  140. Wagner W, Vogel M, Goebel W (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol 27:1793–1800

    Google Scholar 

  141. Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9: 3875–3884

    CAS  Google Scholar 

  142. Delepelaire P, Wandersman C (1990) Protein secretion in Gramnegative bacteria. J Biol Chem 265:17118–17125

    CAS  Google Scholar 

  143. Strathdee CA, Lo RY (1989) Cloning, nucleotide sequence and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol 171: 916–928

    CAS  Google Scholar 

  144. Letoffe S, Delepelaire P, Wandersman C (1990) Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli A-hemolysin. EMBO J 9:1375–1382

    CAS  Google Scholar 

  145. Hui FM, Morrison DA (1991) Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 173: 372–381

    CAS  Google Scholar 

  146. Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum Cll. Food Microbiol 60:160–166

    Google Scholar 

  147. Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240

    Article  Google Scholar 

  148. Axelsson L, Holck A, Birkeland S-T, Aukrust T, Blom H (1993) Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59: 2868–2875

    CAS  Google Scholar 

  149. Kornblum J, Kreiswirth B, Projan SJ, Ross H, Novick RP (1990) agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus. In: Novick RP (ed) Molecular Biology of the Staphylococci. VCH Publishers, New York, pp 373–402

    Google Scholar 

  150. Morfeldt CI, Janzon L, Arvidson S, Löfdahl S (1988) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet. 211:1601–1607

    Article  Google Scholar 

  151. Peng H, Novick RP, Kreitswirth B, Kornblum J, Schlievert P (1988) Cloning, characterization and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 170: 4365–4372

    CAS  Google Scholar 

  152. Muriana PM, Klaenhammer TR (1991b) Cloning, phenotypic expression and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by lactobacillus spp. J Bacteriol 173:1779–1788

    CAS  Google Scholar 

  153. Nissen-Meyer J, Larsen AG, Sletten K, Daeschel M, Nes IF (1993b) Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139:1973–1978

    CAS  Google Scholar 

  154. Saris EJ, Immonen T, Reis M, Sahl H (1996) Immunity of lantibiotics. Antonie van Leeuwenhoeh 69:151–159

    Article  CAS  Google Scholar 

  155. Immonen Y, Ye S, Ra R, Qiao M, Paulin L, Saris P (1995) The codon usage of the nisin Z operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. Sequence 5: 203–218

    Article  CAS  Google Scholar 

  156. Qiao M, Immonen T, Koponen O, Saris PEJ (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L.lact is. FEMS Microbiol Lett 131: 75–80

    Article  CAS  Google Scholar 

  157. Reis M, Eschbach-Bludau M, Iglesias-Wind MI, Kupke T, Sahl H-G (1994) Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl Environ Microbiol 60: 2876–2883

    CAS  Google Scholar 

  158. Meyer C, Beirbaum G, Heidrich C, Reis M, Suling J, Iglesias-Wind MI, Kempter C, Molitor E, Sahl HG (1995) Nucleotide sequence of the lantibiotic Pep 5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role in PepC in thioether formation. Eur J Biochem 232: 478–489

    Article  CAS  Google Scholar 

  159. Quadri LEN, Sailer M, Roy KL, Vederas JC, Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Mol Biol 269:12204–12211

    CAS  Google Scholar 

  160. Tichaczek PS, Vogel RF, Hammes WP (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160: 279–283

    Article  CAS  Google Scholar 

  161. Tichaczek PS, Vogel RF, Hammes WP (1994) Cloning and sequencing of sakP encoding sakacinP, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 140: 361–367

    Google Scholar 

  162. Nissen-Meyer J, Håvarstein LS, Holo H, Sletten K, Nes IF (1993a) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509

    CAS  Google Scholar 

  163. Kok J, Venema K, Venema G (1995) Analysis of lactococcin secretion and immunity in Lactococcus lactis. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 653–659

    Google Scholar 

  164. Peschel A, Götz F (1996) Analysis of the Staphylococcus epidermidis genes epiF,-E and-G involved in epidermin immunity. J Bacteriol 178: 531–536

    CAS  Google Scholar 

  165. Kerpolla RE, Shyamala VK, Klebba P, Ferro-Luzzi Ames G (1991) The membrane-bound proteins of periplasmic permeases form a complex. J Biol Chem 266: 9857–9865

    Google Scholar 

  166. Panagiotidis CH,R eyes M, Sievertsen A, Boos W, Shuman HA (1993) Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. J Biol Chem 268: 23685–23696

    CAS  Google Scholar 

  167. Froseth BR, Herman RE, McKay LL (1988) Cloning of nisin resistance determinant and replication origin on 7.6-kilobase EcoRI fragment of pNP40 from Streptococcus lactis subsp. diacetylactis DRC3. Appl Environ Microbiol 54: 2136–2139

    CAS  Google Scholar 

  168. Froseth BR, McKay LL (1991) Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl Environ Microbiol 57: 804–811

    CAS  Google Scholar 

  169. Jarvis B, Farr J (1971) Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim Biophys Acta 227: 232–240

    CAS  Google Scholar 

  170. Hansen JN (1993) The molecular biology of nisin and its structural analogues. In: Hoover D, Steenson L (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 93–120

    Google Scholar 

  171. Bouret RB, Borkovich KA, Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem 60: 401–441

    Article  Google Scholar 

  172. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Gen 26: 71–112

    Article  CAS  Google Scholar 

  173. Kleerebezem M, Quadri IE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transductionsystems in Gram-positive bacteria. Mol Microbiol 24: 895–904

    Article  CAS  Google Scholar 

  174. Huo L, Martin KJ, Schleif R (1988) Alternative loops regulate the arabinose operon in Escherichia coli. Proc Natl Acad Sci USA 85: 5444–5448

    Article  CAS  Google Scholar 

  175. Igo MM, Losick R (1986) Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191: 615–624

    Article  CAS  Google Scholar 

  176. Martin K, Huo L, Schleifer RF (1986) The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Natl Acad Sci USA 83: 3654–3658

    Article  CAS  Google Scholar 

  177. Ptashne M (1992) The genetic switch. Cell Press and Blackwell Scientific Publications, Cambridge

    Google Scholar 

  178. Cara JH, Schleif RF (1993) Variation of half-site organization and DNA looping by AraC protein. EMBO J 12: 35–44

    Google Scholar 

  179. Coleman, Bown GS, Stormonth DA (1975) A model for the regulation of bacterial extracellular enzyme and toxin biosynthesis. J Theor Biol 52:143–148

    Article  CAS  Google Scholar 

  180. Janzon L, Löfdahl S, Arvidson S (1989) Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 70: 337–349

    Google Scholar 

  181. Janzon L, Arvidson S (1990) The role of the d-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9:1391–1399

    CAS  Google Scholar 

  182. Ji G, Beavis RC, Novick RP (1995) Cell density control of Staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92:12055–12059

    Article  CAS  Google Scholar 

  183. Sanders DA, Koshland DE Jr (1988) Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. Proc Natl Acad Sci USA 85: 8425–8429

    Article  CAS  Google Scholar 

  184. Sanders DA, Gillece-Castro BL, Stock AM, Burlington AL, Koshland DE Jr (1989) Identification of the site of phosphorylation of the chemotaxis response regulator protein. J Biol Chem 264: 21770–21778

    CAS  Google Scholar 

  185. Kupke T, Gotz F (1996) post-translational modifications of lantibiotics. Antonie van Leeuwenhoek 69:139–150

    Article  CAS  Google Scholar 

  186. Ingram LC (1970) A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta 224: 263–265

    CAS  Google Scholar 

  187. Kellner J, Jung G, Josten M, Kaletta C, Entian K-D, Sahl H-G (1989) Pep5, a new lantibiotic: structure elucidation and amino acid sequence of the propeptide. Angew Chem Int Ed Engl 28: 616–619

    Article  Google Scholar 

  188. van Kamp M, Horstink LM, van den Hooven HW, Konings RNH, Hilbers CW, Frey A, Sahl H-G, Metzger JW, van de Ven FJM (1995) Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Eur J Biochem 227: 757–771

    Article  Google Scholar 

  189. Schnell N, Entian K-D, Götz F, Hörner T, Kellner R, Jung G (1989) Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol Lett 58: 263–268

    Article  CAS  Google Scholar 

  190. Kupke T, Stevanovic S, Sahl H-G, Götz F (1992) Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol 174: 5354–5361

    CAS  Google Scholar 

  191. Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian K-D, Gotz F (1992) Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem 204:1149–1154

    Article  CAS  Google Scholar 

  192. Bishop L, Agbayani R, Ambudkar SV, Maloney PC, Ames GF-L (1989) Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proc Natl Acad Sci USA 86: 6953–6957

    Article  CAS  Google Scholar 

  193. Mimmack ML, Gallangher MP, Pearce SR, Hyde SC, Booth IR, Higgins CF (1989) Energy coupling to periplasmic binding protein-dependent transport in vivo. Proc Natl Acad Sci USA 86: 8257–8261

    Article  CAS  Google Scholar 

  194. Chang YF, Young R, Struck DK (1991) The Actinobacillus pleuropneumonia haemolysin determinant: unlinked appCA and appBD loci flanked by pseudogenes. J Bacteriol 173: 5151–5158

    CAS  Google Scholar 

  195. Juranka P, Zhang F, Kulpa J, Endicott J, Blight M, Holland IB, Ling V (1992) Characterization of the haemolysin transporter, HlyB, using an epitope insertion. J Biol Chem 267: 3764–3770

    CAS  Google Scholar 

  196. Guthmiller JM, Kolodrubetz D, Cagle MP, Kraig E (1990) Sequence of the lktB gene from Actinobacillus actinomycetecomitans. Nucl Acids Res 18: 5291–5293

    Article  CAS  Google Scholar 

  197. Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 7: 3997–4004

    CAS  Google Scholar 

  198. Felmlee T, Pellett S, Lee E-Y, Welch RA (1985) Escherichia coli haemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol 163: 88–93

    CAS  Google Scholar 

  199. Wandersmann C (1992) Secretion across the bacterial outer membrane. Trends Genet 8: 317–322

    Google Scholar 

  200. Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59: 2014–2021

    CAS  Google Scholar 

  201. Dinh T, Paulsen IT, Saier MH (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria. J Bacteriol 176: 3825–3831

    CAS  Google Scholar 

  202. Skvirsky RC, Shoba R, Xiaoyu S (1995) Topology analysis of the colicin V export protein CvaA in Escherichia coli. J Bacteriol 177: 6153–6159

    CAS  Google Scholar 

  203. Schulein R, Gentschev I, Mollenkopf H-J, Goebel W (1992) A topological model for the haemolysin translocator protein HlyD. Mol Gen Genet 234:155–163

    CAS  Google Scholar 

  204. Muriana PM, Klaenhammer TR (1991a) Purification and partial characterization lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol 57:114–121

    CAS  Google Scholar 

  205. Allison GE, Ahn C, Stiles ME, Klaenhammer TR (1995a) Utilization of the leucocin export system in Leuconostoc gelidum for production of a Lactobacillus bacteriocin. FEMS Microbiol 131: 87–93

    Article  CAS  Google Scholar 

  206. Allison GE, Worobo RW, Stiles ME, Klaenhammer TR (1995b) Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Appl Environ Microbiol 61:1371–1377

    CAS  Google Scholar 

  207. Chikindas ML, Venema K, Ledeboer AM, Venema G, Kok J (1995) Expression of lactococcin A and pediocin PA-1 in heterologous hosts. Lett Appl Microbiol 21:183–189

    Article  CAS  Google Scholar 

  208. Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities modified peptides from Gram-positive bacteria. Annu Rev Microbiol 52, 41–79

    Article  CAS  Google Scholar 

  209. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pY117. J Bacteriol 178: 3585–3593

    CAS  Google Scholar 

  210. Cintas LM, Casaus P, Haverstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63: 4321–4330

    CAS  Google Scholar 

  211. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50 A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related staphylococcal hemolysins. J Bacteriol 180:1988–1994

    CAS  Google Scholar 

  212. Piard J-C, Kuipers OP, Rollema HS, Desmazeaud MJ, De Vos MJ (1993) Structure, organization and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. In: La lacticine 481, une nouvelle bacteriocine de type lantibiotique produite par Lactococcus lactis: characterization biochemique et genetique, Piard J-C (PhD Thesis): Universite de Caen, France, pp 85–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sablon, E., Contreras, B., Vandamme, E. (2000). Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis. In: New Products and New Areas of Bioprocess Engineering. Advances in Biochemical Engineering/Biotechnology, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45564-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45564-7_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67362-0

  • Online ISBN: 978-3-540-45564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics