Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 68)


A survey is given of the main classes of bacteriocins, produced by lactic acid bacteria: I. lantibiotics II. small heat-stable non-lanthionine containing membrane-active peptides and III. large heat-labile proteins. First, their mode of action is detailed, with emphasis on pore formation in the cytoplasmatic membrane. Subsequently, the molecular genetics of several classes of bacteriocins are described in detail, with special attention to nisin as the most prominent example of the lantibiotic-class. Of the small non-lanthionine bacteriocin class, the Lactococcus lactococcins, and the Lactobacillus sakacin A and plantaricin A-bacteriocins are discussed. The principles and mechanisms of immunity and resistance towards bacteriocins are also briefly reported. The biosynthesis of bacteriocins is treated in depth with emphasis on response regulation, post-translational modification, secretion and proteolytic activation of bacteriocin precursors. To conclude, the role of the leader peptides is outlined and a conceptual model for bacteriocin maturation is proposed.


Antimicrobial peptides Bacteriocins Biosynthesis Genetics Immunity Lactic acid bacteria Lantibiotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Vuyst L, Vandamme EJ (eds) (1994) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Blackie Academic & Professional, LondonGoogle Scholar
  2. 2.
    Rose AH (1982) Fermented Foods. Academic Press, New YorkGoogle Scholar
  3. 3.
    Reed G (1983) Food and Feed Production with Microorganisms. Verlag Chemie, Deerfield Beach, FloridaGoogle Scholar
  4. 4.
    Steinkraus KH (1983) Handbook of Indigenous Fermented Foods. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Wood BJB (1985) Microbiology of Fermented Foods. Elsevier, LondonGoogle Scholar
  6. 6.
    Gilliland SE (1986a) Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, FloridaGoogle Scholar
  7. 7.
    Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12: 253–271CrossRefGoogle Scholar
  8. 8.
    Gilliland SE (1986b) Role of starter culture bacteria in food preservation. In: Gilliland SE (ed) Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, Florida, pp 175–185Google Scholar
  9. 9.
    Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 12: 207–220Google Scholar
  10. 10.
    Schillinger U (1990) Bacteriocins of lactic acid bacteria. In: Bills DD, Kung SD (eds) Biotechnology and Food Safety. Burrerworth-Heinemann, Boston, pp 55–74Google Scholar
  11. 11.
    Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12: 221–237CrossRefGoogle Scholar
  12. 12.
    Lloyd AG, Drake JJP (1975) Problems posed by essential food preservatives. Br Med bull. 31: 214–219Google Scholar
  13. 13.
    Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57:1683–1688Google Scholar
  14. 14.
    Marteau P, Rambeaud J-C (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12: 207–220CrossRefGoogle Scholar
  15. 15.
    Gerritse K, Posno M, Schellekens M, Boersma WJA, Claassen E (1990) Oral administration of TNP-Lactobacillus conjugates in mice: a model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res Microbiol 141: 955–962CrossRefGoogle Scholar
  16. 16.
    Norton PM, Wells JM, Brown HWG, Macpherson AM, Le Page RWF (1997) Protection against tetanus toxin in mice nasally immunized with recombant Lactobacillus lactis expressing tetanus toxin fragment C. Vaccine 15: 616–649CrossRefGoogle Scholar
  17. 17.
    Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40: 722–756Google Scholar
  18. 18.
    Gratia A (1925) Sur un remarquable example d’antagonisme entre souches de colibacille. CR Soc Biol 93:1040–1041Google Scholar
  19. 19.
    Frédericq P (1948) Actions antibiotiques reciproques chez les Enterobacteriaceae. Rev Bel Pathol Med Exp 19:1–107Google Scholar
  20. 20.
    Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200Google Scholar
  21. 21.
    Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 39–86Google Scholar
  22. 22.
    Jung G, Sahl H-G (1991) Nisin and Novel Lantibiotics, ESCOM Science Publishers BV., LeidenGoogle Scholar
  23. 23.
    Baba T, Schneewind O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol 6: 66–71CrossRefGoogle Scholar
  24. 24.
    Rogers LA (1928) The inhibitory effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16: 321–325Google Scholar
  25. 25.
    Whitehead HR (1933) A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem J 27:1793–1800Google Scholar
  26. 26.
    Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2: 5–7CrossRefGoogle Scholar
  27. 27.
    Hurst A (1981) Nisin.Adv Appl Microbiol 27: 85–123CrossRefGoogle Scholar
  28. 28.
    Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van LeeuwenhoekGoogle Scholar
  29. 29.
    Kaletta C, Entian K-D (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171:1597–1601Google Scholar
  30. 30.
    Piard JC, Delorme F, Giraffa G, Commissaire J, Desmazeaud M (1990) Evidence for a bacteriocin produced by lactococcus lactis CNRZ 481. Neth Milk Dairy J 44: 143–158Google Scholar
  31. 31.
    Møfrtveldt CI, Nes IF (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J Gen Microbiol 136:1601–1607Google Scholar
  32. 32.
    Horn N, Swindell S, Dodd H, Gasson M (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet 228:129–135CrossRefGoogle Scholar
  33. 33.
    Møfrtveldt CI, Nissen-Meyer J, Sletten K, Nes IF (1991) Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol 57:1829–1834Google Scholar
  34. 34.
    Harris LJ, Fleming HP, Klaenhammer TR (1992) Developments in nisin research. Food Res Int 25: 57–66CrossRefGoogle Scholar
  35. 35.
    Stoffels G, Nes IF, Gudmundsdottir A (1992) Isolation and properties of a bacteriocinproducing Carnobacterium piscicola isolated from fish. J Appl Bacteriol 73: 309–316Google Scholar
  36. 36.
    Stoffels G, Nissen-Meyer J, Gudmundsdottir A, Sletten K, Holo H, Nes IF (1992) Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol 58:1417–1422Google Scholar
  37. 37.
    Rauch PJG, Beerthuyzen MM, De Vos WM (1990) Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res 18: 4253–4254CrossRefGoogle Scholar
  38. 38.
    Paik SH, Chakicherla A, Hansen JN (1998) Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of Sublancin 168, a Novel lantibiotic Produced by Bacillus subtilis 168. J Biol Chem 273: 23134–23142CrossRefGoogle Scholar
  39. 39.
    Jung G (1991) Lantibiotics: a survey. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM Science, Leiden, pp 1–34Google Scholar
  40. 40.
    De Vos WM,K uipers OP, van der Meer JR, Siezen RJ (1995b) Maturation pathway of nisin and other lantibiotics: post-translational modified antimicrobial peptides exported by Gram-positive bacteria. Mol Microbiol 17: 427–437CrossRefGoogle Scholar
  41. 41.
    Havarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram positive bacteria. Microbiology 140: 2383–2389CrossRefGoogle Scholar
  42. 42.
    Hastings JW, Sailer M, Johnson K, Rou KK, Vederas JC, Stiles ME (1991) Characterization of leucocin A UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173: 7491–7500Google Scholar
  43. 43.
    Holck A, Axelsson L, Birkeland S-E, Aukrust T, Blom H (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol 138: 2715–2720Google Scholar
  44. 44.
    Lozano JCN, Meyer JN, Sletten K, Pelaz C, Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pedicococcus acidilactici. J Gen Microbiol138: 1985–1990Google Scholar
  45. 45.
    Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocin curvacin A from Lactobacillus curvatus LTH 1174 and sakacin P from ke LTH673. Syst Appl Microbiol 15: 460–468Google Scholar
  46. 46.
    van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1991a) Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl Environ Microbiol 57: 492–498Google Scholar
  47. 47.
    Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174: 5686–5692Google Scholar
  48. 48.
    Allison GE, Frémaux C, Klaenhammer TR (1994) Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176: 2235–2241Google Scholar
  49. 49.
    Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum Cll. J Bacteriol 178: 4472–4483Google Scholar
  50. 50.
    Leer RL, van der Vossen JMBM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by lactobacillus acidophilus. Microbiology 141:1629–1635CrossRefGoogle Scholar
  51. 51.
    Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME (1995) A signal peptide-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177: 3143–3149Google Scholar
  52. 52.
    Metha AM, Patel KA, Dave PJ (1983) Isolation and purification of an inhibitory protein from Lactobacillus acidophilus ACT. Microbiology 37: 37–43Google Scholar
  53. 53.
    Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined, bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167: 439–446Google Scholar
  54. 54.
    Joerger MC, Klaenhammer TR (1990) Cloning, expression and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J JBacteriol 172: 6339–6347Google Scholar
  55. 55.
    Toba T, Yoshioka E, Itoh T (1991) Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Lett Appl Microbiol 12:106–108CrossRefGoogle Scholar
  56. 56.
    Vaughan EE, Daly C, Fitzgerald GF (1992) Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol 73: 299–308Google Scholar
  57. 57.
    Upreti GC, Hinsdill RD (1973) Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 4: 487–494Google Scholar
  58. 58.
    Upreti GC, Hinsdill RD (1975a) Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 7:139–145Google Scholar
  59. 59.
    Lewus CB, Sun S, Montville TJ (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58: 143–149Google Scholar
  60. 60.
    Jiménez-Dïaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL, Piard J-C (1993) Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59:1416–1424Google Scholar
  61. 61.
    Schved F, Lalazar A, Henis Y, Juven BJ (1993) Purification, partial characterization and plasmid linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilacitici. J Appl Bacteriol 74: 67–77Google Scholar
  62. 62.
    Venema K, Venema G, Kok J (1995) Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol 3: 299–304CrossRefGoogle Scholar
  63. 63.
    Davey GP (1981) Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346. NZJ Dairy Sci Technol 16:187–190Google Scholar
  64. 64.
    Zajdel JK, Ceglowski P, Dobrzanski WT (1985) Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris. Appl Environ Microbiol 49: 969–974Google Scholar
  65. 65.
    van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN and Abee T (1991b) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173: 7934–7941Google Scholar
  66. 66.
    Bhunia AK, Johnson MC, Ray B, Kalchayanand N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70: 25–33Google Scholar
  67. 67.
    Sahl H-G (1991) Pore formation in bacterial membranes by cationic lantibiotics. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM Science, Leiden, pp 347–358Google Scholar
  68. 68.
    Upreti GC, Hinsdill RD (1975b) Production and mode of action of lactocin 27 bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother 7:139–145Google Scholar
  69. 69.
    Hastings JW, Stiles ME (1991) Antibiosis of Leuconostoc gelidum isolated from meat. J Appl Bacteriol 70:127–134Google Scholar
  70. 70.
    Kok J, Holo H, van Belkum MJ, Haandrikman AJ, Nes IF (1993) Non-nisin bacteriocins in lactococci: biochemistry, genetics and mode of action. In: Hoover D, Steenson L (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 121–150Google Scholar
  71. 71.
    Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN, Venema G (1993) Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl Environ Microbiol 59:1041–1048Google Scholar
  72. 72.
    Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJM (1996) Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178: 600–605Google Scholar
  73. 73.
    Christensen DP, Hutkins RW (1992) Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici. Appl Environ Microbiol 58: 3312–3315Google Scholar
  74. 74.
    Ray B, Hoover DG (1993) Pediocins. In: Hoover DG, Steenson LR (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 181–210Google Scholar
  75. 75.
    Chikindas ML, Garcia-Garcera MJ, Driessen AJM, Ledeboer AM, Nissen-Meyer N, Nes IF, Abee T, Konings WN, Venema G (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophylic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59: 3577–3584Google Scholar
  76. 76.
    Kaiser ET (1987) Design of amphiphilic peptides. In: Alan R (ed) Protein Engineering. Liss, New York, pp 193–199Google Scholar
  77. 77.
    Frémaux C, Ahn C, Klaenhammer TR (1993) Molecular analysis of the lactacin F operon. Appl Environ Microbiol 59: 3906–3915Google Scholar
  78. 78.
    Salomon RA, Farias RN (1993) The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175: 7741–7742Google Scholar
  79. 79.
    Salomon RA, Farias RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177: 3323–3325Google Scholar
  80. 80.
    Moeck GS, Fasly Bazzaz BS, Gras MF, Ravi TS, Ratcliffe MJH, Coulton JW (1994) Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 176: 4250–4259Google Scholar
  81. 81.
    Gross E, J, Morell J (1971) The stucture of nisin. J Am Chem Soc 93: 4634–4635CrossRefGoogle Scholar
  82. 82.
    Sahl H-G, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230: 827–833CrossRefGoogle Scholar
  83. 83.
    Mulders JW, Boerrigter LJ, Rollema HS, Siezen RJ, De Vos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201: 581–584CrossRefGoogle Scholar
  84. 84.
    Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263: 9508–9514Google Scholar
  85. 85.
    Reis M, Sahl H-G (1991) Genetic analysis of the producer self-protection mechanism (‘immunity’) against Pep5. In: Jung G, Sahl H-G (eds) Nisin and Novel Lantibiotics. ESCOM, Leiden, pp 320–331Google Scholar
  86. 86.
    Chung YJ, Steen MT, Hansen JN (1992) The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homologue of the hemolysin B transport protein. J Bacteriol 174:1417–1422Google Scholar
  87. 87.
    Klein C, Kaletta C, Schnell N, Entian K-D (1992) Analysis of genes involved in the biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58:132–142Google Scholar
  88. 88.
    Schnell N, Engelke G,A ugustin J, Rosenstein R,U ngermann V, Götz F, Entian K-D (1992) Analysis of genes involved in the biosynthesis of the lantibiotic epidermin. Eur J Biochem 204: 57–68CrossRefGoogle Scholar
  89. 89.
    Klein C, Kaletta C, Entian K-D (1993) Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59: 296–303Google Scholar
  90. 90.
    Schnell N, Entian K-D, Schneider U, Götz F, Zähner H, Kellner R, Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276–278CrossRefGoogle Scholar
  91. 91.
    Steen MT, Chung YJ, Hansen JN (1991) Characterization of the nisin gene as a part of a polycistronic operon in the chromosome of Lactococcus lactis ATCC 11454. Appl Environ Microbiol 57:1181–1188Google Scholar
  92. 92.
    Kuipers OP, Beerthuyzen MM, Siezen JR, De Vos W (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of nisin immunity. Eur J Biochem 216: 281–291CrossRefGoogle Scholar
  93. 93.
    Siezen RJ, Kuipers OP, de Vos WM (1996) Comparison of lantibiotics geneclu sters and encoded proteins. Antonie van Leeuwenhoek 69:171–184CrossRefGoogle Scholar
  94. 94.
    Gasson MJ (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712. FEMS Microbiol Lett 21: 7–10CrossRefGoogle Scholar
  95. 95.
    Dodd HM, Horn N, Gasson MJ (1990) Analysis of the genetic determinant for production of the petpide antibiotic nisin. J Gen Microbiol 136: 555–566Google Scholar
  96. 96.
    Rodriguez JM, Dodd HM (1996) Genetic determinants for the biosynthesis of nisin, a bacteriocin produced by Lactobacillus lactis. Microbiologia SEM 12: 61–74Google Scholar
  97. 97.
    Rauch PJG, De Vos WM (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 174:1280–1287Google Scholar
  98. 98.
    Rauch PJG, De Vos WM (1994) Identification and characterization of the genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol 176: 2165–2171Google Scholar
  99. 99.
    Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P (1989) Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J 8: 2425–2433Google Scholar
  100. 100.
    Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian K-D (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58: 3730–3743Google Scholar
  101. 101.
    van der Meer FR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos W (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 174: 2152–2159Google Scholar
  102. 102.
    van der Meer FR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, De Vos WM (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem 269: 3555–3562Google Scholar
  103. 103.
    De Vos WM, Beerthuyzen MM, Luesink EL, Kuipers OP (1995a) Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 617–625Google Scholar
  104. 104.
    Siegers K, Entian K-D (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1081–1089Google Scholar
  105. 105.
    Fath MJ, Kolter R (1993) ABC exporters: bacterial exporters. Microbiol Rev 57: 995–1017Google Scholar
  106. 106.
    Qiao M, Saris PE (1996) Evidence for a role of Nis T in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbil Lett 144: 89–93CrossRefGoogle Scholar
  107. 107.
    Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian K-D (1994) Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60: 814–825Google Scholar
  108. 108.
    Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive response in bacteria. Microbiol Rev 53: 450–490Google Scholar
  109. 109.
    Garido MC, Herrero M, Kolter R, Moreno F (1988) The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBO J 7:1853–1862Google Scholar
  110. 110.
    Klein C, Entian K-D (1994) Genes involved in self-protection against the antibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60: 2793–2801Google Scholar
  111. 111.
    Pugsley AP (1988) Protein secretion across the outer membrane of Gram-negative bacteria. In: Das RA, Robins PW (eds) Protein transfer and organelle biogenesis. Academic Press, Orlando, pp 607–652Google Scholar
  112. 112.
    Song HY, Cramer WA (1991) Membrane topography of ColEI gene products: the immunity protein. J Bacteriol 173: 2935–2943Google Scholar
  113. 113.
    Immonen T, Ye S, Ra R, Quia M, Paulin L, Saris PEJ (1991) The codon usage of the nisZ operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. DNA sequence 5: 203–218CrossRefGoogle Scholar
  114. 114.
    De Vos WM, Simmons GFM (1994) Gene cloning and expression systems in lactococci. In: Gasson MJ, De Vos WM (eds) Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic & Professional, Glasgow, pp 52–97Google Scholar
  115. 115.
    Ra SR, Qiao M, Immonen T, Pujana I, Saris PEJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 142:1281–1288CrossRefGoogle Scholar
  116. 116.
    Ra SR, Saris PEJ (1995) Characterization of procaryotic mRNAs by RT-PCR. Biotechniques 18: 792–795Google Scholar
  117. 117.
    Piard JC, Muriana PM, Desmazeaud PJ, Klaenhammer TR (1992) Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ Microbiol 58: 279–284Google Scholar
  118. 118.
    Rince A, Dufour A, Le Pogam S, Thuault D, Bourgeois CM, Le Pennec JP (1994) Cloning, expression and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from lactococcus lactis subsp. lactis. Appl Environ Microbiol 60:1652–1657Google Scholar
  119. 119.
    Rince A, Dufour A, Uguen P, Le Pennec JP, Haras D (1997) Characterization of the lacticin 481 operon: the Lactococcus lactis genes IctF, IctE and IctG encode a pupative ABC transporter involved in bacteriocin immunity. Appl Environ Microbiol 63: 4252–4260Google Scholar
  120. 120.
    Nes IF, Tagg JR (1996) Novel lantibiotics and their prepeptides. Antonie van Leeuwenhoek 69: 89–97CrossRefGoogle Scholar
  121. 121.
    Skaugen M, Abildgaard CI, Nes IF (1997) Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S.Mol Gen Genet 253: 674–686Google Scholar
  122. 122.
    Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176: 7335–7344Google Scholar
  123. 123.
    Siezen RJ, De Vos WM, Leunissen JAM, Dijkstra BW (1995) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4: 719–737CrossRefGoogle Scholar
  124. 124.
    Frémaux C, Héchard Y, Cienatiempo Y (1995) Mesentericin Y105 gene cluster in Leuconostoc mesenteroides Y105. Microbiology 141:1637–1645CrossRefGoogle Scholar
  125. 125.
    Holo H, Nilssen Ø, Nes IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris. Isolation and characterization of the protein and its gene. J Bacteriol 173: 3879–3887Google Scholar
  126. 126.
    Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL (1992) Molecular analysis of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis Biovar diacetylactis WM4. Appl Environ Microbiol 58:1952–1961Google Scholar
  127. 127.
    van Belkum MJ (1994) Lactococcins, bacteriocins of Lactococcus lactis. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Blackie Academic & Professional, London, pp 301–318Google Scholar
  128. 128.
    Nes IF, Håvarstein LS, Holo H (1995) Genetics of non-lantibiotic bacteriocins. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 645–651Google Scholar
  129. 129.
    Van Belkum MJ, Stiles ME (1995) Molecular characterization of the genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 61: 3573–3579Google Scholar
  130. 130.
    Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MF, Toonen MY, Walker SA, Zoetmulder LCM, Vandenberg PA (1992) Cloning, expression and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PACl.0. Appl Environ Microbiol 58: 2360–2367Google Scholar
  131. 131.
    Bukhtiyarova M, Yang R, Ray B (1994) Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative strain. Appl Environ Microbiol 60: 3405–3408Google Scholar
  132. 132.
    Venema K, Kok J,M arugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas L (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC 1.0 PedB is the isnmunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17: 515–522CrossRefGoogle Scholar
  133. 133.
    Axelsson L, Holck A (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177: 2125–2137Google Scholar
  134. 134.
    Diep DB, Håvarstein LS, Nissen-Meyer J, Nes IF (1994) The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C ll, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60:160–166Google Scholar
  135. 135.
    van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1989) Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol 55:1187–1191Google Scholar
  136. 136a.
    van Belkum MJ, Kok J, Venema G (1992) Cloning, sequencing and expression in Escherichia coli of IcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol 58:572–577Google Scholar
  137. 136b.
    Delepelaire P, Wandersman C (1990) Protein secretion in Gram-negative bacteria. J Biol Chem 265:17118–17125Google Scholar
  138. 137.
    Harmon KS, McKay LL (1987) Restriction enzyme analysis of lactose and bacteriocin plasmids from Streptococcus lactis subsp. diacetylactis WM4 and cloning of BclII fragments coding for bacteriocin production. Appl Environ Microbiol 53:1171–1174Google Scholar
  139. 138.
    Randall LL, Hardy SJS, Thom JR (1987) Export of protein: a biochemical view. Annu Rev Microbiol 41: 507–541CrossRefGoogle Scholar
  140. 139.
    Wagner W, Vogel M, Goebel W (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol 27:1793–1800Google Scholar
  141. 140.
    Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9: 3875–3884Google Scholar
  142. 141.
    Delepelaire P, Wandersman C (1990) Protein secretion in Gramnegative bacteria. J Biol Chem 265:17118–17125Google Scholar
  143. 142.
    Strathdee CA, Lo RY (1989) Cloning, nucleotide sequence and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol 171: 916–928Google Scholar
  144. 143.
    Letoffe S, Delepelaire P, Wandersman C (1990) Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli A-hemolysin. EMBO J 9:1375–1382Google Scholar
  145. 144.
    Hui FM, Morrison DA (1991) Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 173: 372–381Google Scholar
  146. 145.
    Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum Cll. Food Microbiol 60:160–166Google Scholar
  147. 146.
    Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240CrossRefGoogle Scholar
  148. 147.
    Axelsson L, Holck A, Birkeland S-T, Aukrust T, Blom H (1993) Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59: 2868–2875Google Scholar
  149. 148.
    Kornblum J, Kreiswirth B, Projan SJ, Ross H, Novick RP (1990) agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus. In: Novick RP (ed) Molecular Biology of the Staphylococci. VCH Publishers, New York, pp 373–402Google Scholar
  150. 149.
    Morfeldt CI, Janzon L, Arvidson S, Löfdahl S (1988) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet. 211:1601–1607CrossRefGoogle Scholar
  151. 150.
    Peng H, Novick RP, Kreitswirth B, Kornblum J, Schlievert P (1988) Cloning, characterization and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 170: 4365–4372Google Scholar
  152. 151.
    Muriana PM, Klaenhammer TR (1991b) Cloning, phenotypic expression and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by lactobacillus spp. J Bacteriol 173:1779–1788Google Scholar
  153. 152.
    Nissen-Meyer J, Larsen AG, Sletten K, Daeschel M, Nes IF (1993b) Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139:1973–1978Google Scholar
  154. 153.
    Saris EJ, Immonen T, Reis M, Sahl H (1996) Immunity of lantibiotics. Antonie van Leeuwenhoeh 69:151–159CrossRefGoogle Scholar
  155. 154.
    Immonen Y, Ye S, Ra R, Qiao M, Paulin L, Saris P (1995) The codon usage of the nisin Z operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. Sequence 5: 203–218CrossRefGoogle Scholar
  156. 155.
    Qiao M, Immonen T, Koponen O, Saris PEJ (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L.lact is. FEMS Microbiol Lett 131: 75–80CrossRefGoogle Scholar
  157. 156.
    Reis M, Eschbach-Bludau M, Iglesias-Wind MI, Kupke T, Sahl H-G (1994) Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl Environ Microbiol 60: 2876–2883Google Scholar
  158. 157.
    Meyer C, Beirbaum G, Heidrich C, Reis M, Suling J, Iglesias-Wind MI, Kempter C, Molitor E, Sahl HG (1995) Nucleotide sequence of the lantibiotic Pep 5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role in PepC in thioether formation. Eur J Biochem 232: 478–489CrossRefGoogle Scholar
  159. 158.
    Quadri LEN, Sailer M, Roy KL, Vederas JC, Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Mol Biol 269:12204–12211Google Scholar
  160. 159.
    Tichaczek PS, Vogel RF, Hammes WP (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160: 279–283CrossRefGoogle Scholar
  161. 160.
    Tichaczek PS, Vogel RF, Hammes WP (1994) Cloning and sequencing of sakP encoding sakacinP, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 140: 361–367Google Scholar
  162. 161.
    Nissen-Meyer J, Håvarstein LS, Holo H, Sletten K, Nes IF (1993a) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509Google Scholar
  163. 162.
    Kok J, Venema K, Venema G (1995) Analysis of lactococcin secretion and immunity in Lactococcus lactis. In: Ferretti JJ, Gilmore MS, Klaenhammer TR (eds) Genetics of Streptococci, Enterococci and Lactococci. Karger, New York, pp 653–659Google Scholar
  164. 163.
    Peschel A, Götz F (1996) Analysis of the Staphylococcus epidermidis genes epiF,-E and-G involved in epidermin immunity. J Bacteriol 178: 531–536Google Scholar
  165. 164.
    Kerpolla RE, Shyamala VK, Klebba P, Ferro-Luzzi Ames G (1991) The membrane-bound proteins of periplasmic permeases form a complex. J Biol Chem 266: 9857–9865Google Scholar
  166. 165.
    Panagiotidis CH,R eyes M, Sievertsen A, Boos W, Shuman HA (1993) Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. J Biol Chem 268: 23685–23696Google Scholar
  167. 166.
    Froseth BR, Herman RE, McKay LL (1988) Cloning of nisin resistance determinant and replication origin on 7.6-kilobase EcoRI fragment of pNP40 from Streptococcus lactis subsp. diacetylactis DRC3. Appl Environ Microbiol 54: 2136–2139Google Scholar
  168. 167.
    Froseth BR, McKay LL (1991) Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl Environ Microbiol 57: 804–811Google Scholar
  169. 168.
    Jarvis B, Farr J (1971) Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim Biophys Acta 227: 232–240Google Scholar
  170. 169.
    Hansen JN (1993) The molecular biology of nisin and its structural analogues. In: Hoover D, Steenson L (eds) Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, pp 93–120Google Scholar
  171. 170.
    Bouret RB, Borkovich KA, Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem 60: 401–441CrossRefGoogle Scholar
  172. 171.
    Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Gen 26: 71–112CrossRefGoogle Scholar
  173. 172.
    Kleerebezem M, Quadri IE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transductionsystems in Gram-positive bacteria. Mol Microbiol 24: 895–904CrossRefGoogle Scholar
  174. 173.
    Huo L, Martin KJ, Schleif R (1988) Alternative loops regulate the arabinose operon in Escherichia coli. Proc Natl Acad Sci USA 85: 5444–5448CrossRefGoogle Scholar
  175. 174.
    Igo MM, Losick R (1986) Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191: 615–624CrossRefGoogle Scholar
  176. 175.
    Martin K, Huo L, Schleifer RF (1986) The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Natl Acad Sci USA 83: 3654–3658CrossRefGoogle Scholar
  177. 176.
    Ptashne M (1992) The genetic switch. Cell Press and Blackwell Scientific Publications, CambridgeGoogle Scholar
  178. 177.
    Cara JH, Schleif RF (1993) Variation of half-site organization and DNA looping by AraC protein. EMBO J 12: 35–44Google Scholar
  179. 178.
    Coleman, Bown GS, Stormonth DA (1975) A model for the regulation of bacterial extracellular enzyme and toxin biosynthesis. J Theor Biol 52:143–148CrossRefGoogle Scholar
  180. 179.
    Janzon L, Löfdahl S, Arvidson S (1989) Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 70: 337–349Google Scholar
  181. 180.
    Janzon L, Arvidson S (1990) The role of the d-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9:1391–1399Google Scholar
  182. 181.
    Ji G, Beavis RC, Novick RP (1995) Cell density control of Staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92:12055–12059CrossRefGoogle Scholar
  183. 182.
    Sanders DA, Koshland DE Jr (1988) Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. Proc Natl Acad Sci USA 85: 8425–8429CrossRefGoogle Scholar
  184. 183.
    Sanders DA, Gillece-Castro BL, Stock AM, Burlington AL, Koshland DE Jr (1989) Identification of the site of phosphorylation of the chemotaxis response regulator protein. J Biol Chem 264: 21770–21778Google Scholar
  185. 184.
    Kupke T, Gotz F (1996) post-translational modifications of lantibiotics. Antonie van Leeuwenhoek 69:139–150CrossRefGoogle Scholar
  186. 185.
    Ingram LC (1970) A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta 224: 263–265Google Scholar
  187. 186.
    Kellner J, Jung G, Josten M, Kaletta C, Entian K-D, Sahl H-G (1989) Pep5, a new lantibiotic: structure elucidation and amino acid sequence of the propeptide. Angew Chem Int Ed Engl 28: 616–619CrossRefGoogle Scholar
  188. 187.
    van Kamp M, Horstink LM, van den Hooven HW, Konings RNH, Hilbers CW, Frey A, Sahl H-G, Metzger JW, van de Ven FJM (1995) Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Eur J Biochem 227: 757–771CrossRefGoogle Scholar
  189. 188.
    Schnell N, Entian K-D, Götz F, Hörner T, Kellner R, Jung G (1989) Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol Lett 58: 263–268CrossRefGoogle Scholar
  190. 189.
    Kupke T, Stevanovic S, Sahl H-G, Götz F (1992) Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol 174: 5354–5361Google Scholar
  191. 190.
    Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian K-D, Gotz F (1992) Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem 204:1149–1154CrossRefGoogle Scholar
  192. 191.
    Bishop L, Agbayani R, Ambudkar SV, Maloney PC, Ames GF-L (1989) Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proc Natl Acad Sci USA 86: 6953–6957CrossRefGoogle Scholar
  193. 192.
    Mimmack ML, Gallangher MP, Pearce SR, Hyde SC, Booth IR, Higgins CF (1989) Energy coupling to periplasmic binding protein-dependent transport in vivo. Proc Natl Acad Sci USA 86: 8257–8261CrossRefGoogle Scholar
  194. 193.
    Chang YF, Young R, Struck DK (1991) The Actinobacillus pleuropneumonia haemolysin determinant: unlinked appCA and appBD loci flanked by pseudogenes. J Bacteriol 173: 5151–5158Google Scholar
  195. 194.
    Juranka P, Zhang F, Kulpa J, Endicott J, Blight M, Holland IB, Ling V (1992) Characterization of the haemolysin transporter, HlyB, using an epitope insertion. J Biol Chem 267: 3764–3770Google Scholar
  196. 195.
    Guthmiller JM, Kolodrubetz D, Cagle MP, Kraig E (1990) Sequence of the lktB gene from Actinobacillus actinomycetecomitans. Nucl Acids Res 18: 5291–5293CrossRefGoogle Scholar
  197. 196.
    Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 7: 3997–4004Google Scholar
  198. 197.
    Felmlee T, Pellett S, Lee E-Y, Welch RA (1985) Escherichia coli haemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol 163: 88–93Google Scholar
  199. 198.
    Wandersmann C (1992) Secretion across the bacterial outer membrane. Trends Genet 8: 317–322Google Scholar
  200. 199.
    Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59: 2014–2021Google Scholar
  201. 200.
    Dinh T, Paulsen IT, Saier MH (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria. J Bacteriol 176: 3825–3831Google Scholar
  202. 201.
    Skvirsky RC, Shoba R, Xiaoyu S (1995) Topology analysis of the colicin V export protein CvaA in Escherichia coli. J Bacteriol 177: 6153–6159Google Scholar
  203. 202.
    Schulein R, Gentschev I, Mollenkopf H-J, Goebel W (1992) A topological model for the haemolysin translocator protein HlyD. Mol Gen Genet 234:155–163Google Scholar
  204. 203.
    Muriana PM, Klaenhammer TR (1991a) Purification and partial characterization lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol 57:114–121Google Scholar
  205. 204.
    Allison GE, Ahn C, Stiles ME, Klaenhammer TR (1995a) Utilization of the leucocin export system in Leuconostoc gelidum for production of a Lactobacillus bacteriocin. FEMS Microbiol 131: 87–93CrossRefGoogle Scholar
  206. 205.
    Allison GE, Worobo RW, Stiles ME, Klaenhammer TR (1995b) Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Appl Environ Microbiol 61:1371–1377Google Scholar
  207. 206.
    Chikindas ML, Venema K, Ledeboer AM, Venema G, Kok J (1995) Expression of lactococcin A and pediocin PA-1 in heterologous hosts. Lett Appl Microbiol 21:183–189CrossRefGoogle Scholar
  208. 207.
    Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities modified peptides from Gram-positive bacteria. Annu Rev Microbiol 52, 41–79CrossRefGoogle Scholar
  209. 208.
    Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pY117. J Bacteriol 178: 3585–3593Google Scholar
  210. 209.
    Cintas LM, Casaus P, Haverstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63: 4321–4330Google Scholar
  211. 210.
    Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50 A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related staphylococcal hemolysins. J Bacteriol 180:1988–1994Google Scholar
  212. 211.
    Piard J-C, Kuipers OP, Rollema HS, Desmazeaud MJ, De Vos MJ (1993) Structure, organization and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. In: La lacticine 481, une nouvelle bacteriocine de type lantibiotique produite par Lactococcus lactis: characterization biochemique et genetique, Piard J-C (PhD Thesis): Universite de Caen, France, pp 85–116Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  1. 1.Innogenetics N.V.GhentBelgium
  2. 2.Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial TechnologyUniversity of GhentGhentBelgium

Personalised recommendations